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Abstract—Physical constraints must be enforced when dis-
tributed energy resources, such as PV, are integrated into
distribution network. Hosting capacity (HC) is thus introduced
to define the maximum renewable generation that distribution
system can accommodate. When the grid is further pushed
towards decarbonization, improving HC becomes even more
important. This work presents a hybrid adjustable power flow
model to increase the uncertainty-proof HC, aiming to securely
and cost-effectively utilize flexible resources. We propose a novel
hybrid relaxation approach to convexifying a two-stage AC model
with variable uncertainty set. An iterative algorithm is designed
to solve the problem. We perform the case study in a single-
phase 141-node system and a three-phase 33-bus system. The
proposed approach shows promising performance in accuracy,
convergence, and robustness.

Index Terms—Uncertainty, Renewable, Surrogate Affine Pol-
icy, Convexification

NOMENCLATURE

A. Sets and Indices

T , t Set/Index of time periods.
N , n Set/Index of PVs.
M,m Set/Index of loads.
L, l Set/Index of GTGs.
R, r Set/Index of SVCs.
I, i Set/Index of nodes.
B, (i, j) Set/Index of distribution lines.

B. Variables

P pv,s,ϕ
n,t , Qpv,s,ϕ

n,t Scheduled active/reactive power of n-th
PV at time t.

P g,ϕ
l,t , Qg,ϕ

l,t Scheduled active/reactive power of l-th
GTG at time t.

Qsvc,ϕ
r,t Scheduled reactive power of r-th SVC at

time t.
Cpv,ϕ

n Capacity of n-th PV.
Csvc,ϕ

r Capacity of r-th SVC.
λsvc,ϕ
r Binary variable of r-th SVC, equaling 1

if installed, otherwise 0.
uup,ϕ
n,t , udown,ϕ

n,t Upper/Lower bound of OIR of n-th PV
at time t.

uup,ϕ
m,t , u

down,ϕ
m,t Upper/Lower bound of OIR of m-th load

at time t.
Wϕ

i,t, T
ϕ
ij,t, R

ϕ
ij,t Auxiliary variables of SOC relaxation.
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π Non-negative multiplier.
F̂P , F̂Q, F̂ z Surrogate affine policy of active power,

reactive power and auxiliary variables.

C. Parameters

klow,ϕ
n,t , kup,ϕn,t Lower/Upper bound coefficients for the

confidence interval of n-th PV at time t.
kf,ϕn,t Forecast expectation coefficient of n-th PV

at time t.
P low,ϕ
m,t , Pup,ϕ

m,t Lower/Upper bound for the confidence in-
terval of m-th load at time t.

P l,f,ϕ
m,t Forecast expectation of m-th load at time t.

Gϕ
ij , B

ϕ
ij Conductance/Susceptance components of

the admittance matrix.
θpv,ϕn , θpv,ϕn Lower/Upper limit of power factor angle of

n-th PV.
αp,ϕ
l , αq,ϕ

l Coefficient of minimum active power and
maximum phase-lead operation of l-th
GTG.

θg,ϕl Power factor of l-th GTG.
Cg,ϕ

l Capacity of l-th GTG.
Xsvc,ϕ Number of installed SVC.
Csvc,ϕ

r Maximum allowable capacity of r-th SVC.
V ϕ, V ϕ Lower/Upper bound of voltage.
Nu Length of the uncertainty vector.
Sϕ
ij Apparent power capacity of distribution

line.
V ϕ(0)

i,t , θϕ
(0)

i,t Nominal point of voltage magnitude/angle
at i-th node at time t.

I. INTRODUCTION

Renewable energy such as photovoltaic (PV) in power
systems is regarded as the important contributor to carbon
neutrality. With government support and declining per wart
cost of PV, worldwide solar energy production has boomed in
the past decades. At least 139.4 GW of PV have been installed
and commissioned globally in 2020 [1]. At the end of 2020,
the total cumulative installed capacity of PV reached 760.4
GW.

However, the rapidly rising penetration of PV has been
posing challenges to the distribution network, such as reverse
power, over-voltage, and real-time power balance [2]. Ac-
cording to ANSI C84.1-2011 [3], the voltage in distribution
system should remain within 5% of its nominal value. The
power injection from high PV penetration can easily cause
exceeding-security-limit voltage. In the meantime, PV gener-
ation is regarded semi-controllable due to its intermittent and
random nature, which makes it difficult to balance the power
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in real time. Utilities thus need to determine the maximum
PV installation capacity that they can accommodate without
violating any operation constraints. The maximum renewable
installation capacity is defined as the hosting capacity (HC)
[4], [5]. The concept of renewable HC receives well attention
in the power community, and some utilities have used HC in
their production systems.

The HC literature is categorized into static HC (SHC) [6]–
[13] and dynamic HC (DHC) [14]–[16]. SHC is typically
viewed as a static parameter determined for PV interconnec-
tion, and the DHC considers the dynamic characteristics of
power systems. Most literature employ Monte Carlo based
methods to determine the HC [6]–[9], [17]. The basic idea is to
perform power flow simulations with a large set of randomly
generated samples, and then find the worst-case snapshot for
any operation constraint violation, such as over/undervoltage,
voltage imbalance, conductor thermal limit violation, trans-
former overload, etc.

In the early literature, HC is attained from passive simula-
tions, where no recourse actions are taken in operation. It is
hence regarded conservative as the absence of recourse actions
will prevent utilities from accommodating more PV [18]. In
recent years, some researches consider the recourse action in
determining HC. Among them, reference [10] develops a bi-
level model to determine the battery storage system (BSS) allo-
cation for overvoltage mitigation. Active distribution network
(ADN) in [11] is managed to maximize HC. In [12], quadratic
power control is used to improve the mitigation performance of
BSS and increase HC with a non-linear programming model.
Reference [19] proposes a reactive power flow control method
for PV inverters to provide voltage regulations.

Uncertainty has been taken into consideration recently. The
three predominant techniques used to handle uncertainty have
been stochastic analysis [4], [20], [21], stochastic optimization
[22]–[24] and robust optimization [25]–[27]. These interesting
works have made important progress in handling uncertainty
for HC. In the stochastic analysis (SA), Monte Carlo simula-
tion is used to generate the random scenarios of uncertainty.
The stochastic optimization (SO) often models a number
of scenarios of uncertainty by utilizing probability density
function (PDF). The worst-case oriented robust optimization
(RO) can guarantee the feasibility of decisions by considering
the worst-case scenario from the uncertainty intervals. How-
ever, finite scenarios condensed from infinite uncertainty in
SO or SA may lead to HC overly pessimistic or optimistic.
RO often requires efforts in solving the intractable NP-hard
problems with max-min structure and variable uncertainty
set. Moreover, the explicit recourse action, which denotes the
readily determined dispatch strategy of flexible resources when
uncertainty is materialized, is absent in the aforementioned
works.

On the other hand, it is still challenging to balance the model
accuracy and solution quality of the mathematical optimization
approach. When AC model is employed, heuristic methods are
often used in the solution approaches [11], [22]. However, the
solution quality of heuristic methods may not be guaranteed,
and extensive computation efforts are often required. In the
meantime, when linearized approximation [23]–[27], such as

DistFlow model, is used, it may be not accurate enough
and lead to HC inaccuracy. Considering uncertainty makes
it even more challenging. Both SO and RO approaches could
significantly increase the computational complexity. Hence, in
most existing work of mathematical optimization approach,
either heuristic methods or linearized models are employed to
find HC.

Aiming to capture the uncertainty of PV and load while
guaranteeing model accuracy and solution quality, this paper
proposes an adjustable approach based on a novel hybrid con-
vexification model, which can also provide explicit recourse
action for flexible resources. As the proposed model is immune
to uncertainty, we name the HC attained as uncertainty-
proof HC. Variable uncertainty set of PV generation and
load demand is introduced in the model. Surrogate Affine
Approximation method proposed in [28] is employed to solve
the problem. When uncertainty is materialized, utilities can
take pre-optimized actions for controllable resources, such as
PV inverters, static var compensators (SVCs) and distributed
gas turbine generators (GTGs), to comply with operation
constraints. The contributions of this paper are threefold.

• This paper presents an adjustable AC power flow model
to increase uncertainty-proof HC. Inspired by robust
work, this model gives a solution that is immune to
any uncertainty. In the meantime, the model has variable
uncertainty set, as HC is to be determined. The HC,
location, and size of SVC are decision variables at the
first stage, i.e. planning stage, while the uncertainty from
PV generation and load demand is accommodated by
distributed energy resources (DERs) at the second stage,
i.e. operation stage.

• This work proposes a novel hybrid convexification ap-
proximation and successive algorithm to find the solution.
They balance the model accuracy and solution quality.
The second order cone relaxation is employed for power
flow model at the first stage, while the second stage
integrates the affine policy and an iterative linearization
technique. The proposed solution approach iteratively
approximates the original AC model. The hybrid approx-
imation and algorithm could have wide applications in
two-stage or multi-stage models.

• The approach provides an explicit re-dispatch policy for
flexible DERs. The re-dispatch policy is an analogy to the
participation coefficient in Automatic Generation Control
(AGC), except that it is optimally determined. Flexible
resources can be re-dispatched based on a closed-form
solution when the uncertainty is materialized. Besides,
re-dispatch action is continuous and can be applied in
different timescales.

The rest of this paper is organized as follows. In Section II,
the adjustable hybrid power flow model is proposed. In Sec-
tion III, the solution approach is presented. Case studies are
given in Section IV. Section V concludes this paper.

II. PROBLEM FORMULATION

This section presents an adaptive optimization model for
the uncertainty-proof HC. The objective is to find the largest
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Fig. 1. Diagrammatic sketch of the proposed adaptive framework to increase
uncertainty-proof HC. The uncertainty set of PV output varies with HC, and
any uncertainty can be safely accommodated based on the re-dispatch policy.

PV capacity that the distribution system can accommodate
with flexible resources. The system is guaranteed to miti-
gate uncertainty when the uncertainty is materialized. Fig.1
illustrates the proposed framework. Let Pt, Qt, Vt, and θt
be the vectors of scheduled active power, reactive power of
controllable components, voltage magnitude, and phase angle,
respectively. They are optimally determined together with
HC of PV, SVC siting and sizing at Stage-1, and they are
adjustable to accommodate any uncertainty from PV output
and load demand at Stage-2. The PV output uncertainty set
is a function of PV installation capacity, and thus is modeled
as a decision variable. P̂t, Q̂t, V̂t and θ̂t are new variables
at Stage-2 based on the re-dispatch policy. Therefore, the
variables at Stage-1 represent planning decisions, while the
re-dispatch at Stage-2 represent operation decision. The short-
term operation decisions that may change drastically in the real
condition are simplified as the re-dispatch variables at Stage-
2. As a side note, utility can also perform the simulation in
the day-ahead scheduling to get a more accurate short-term
re-dispatch policy in the intraday scheduling.

A. Confidence Interval of PV Generation and Load Uncer-
tainty

The deviations from PV forecast output and load forecast
are considered as uncertainty. It is noted that the beta distri-
bution function is often used to characterize PV output. We
assume the deviations from PV generation and load forecast
follow the Gaussian distribution. In the three-phase distribution
system, the materialized active power output from PV n and
demand from load m of phase ϕ are denoted as

P pv,ϕ
n,t = P pv,f,ϕ

n,t + ϵpv,ϕn,t , ϵpv,ϕn,t ∼ N
(
0, σ2

1

)
,∀t ∈ T , (1)

P l,ϕ
m,t = P l,f,ϕ

m,t + ϵl,ϕm,t, ϵl,ϕm,t ∼ N
(
0, σ2

2

)
,∀t ∈ T , (2)

where P pv,ϕ
n,t , P pv,f,ϕ

n,t and ϵpv,ϕn,t are materialized PV output,
forecast expectation of PV output, and deviation from PV
forecast at time t, respectively. P l,ϕ

m,t, P
l,f,ϕ
m,t and ϵl,ϕm,t denote

actual load demand, forecast expectation of load, and deviation
from load forecast at time t, respectively. T stands for the set
of time periods. σ2

1 and σ2
2 are the variance of uncertainty.

PV output is directly proportional to its capacity and solar
intensity, and the area is directly proportional to the capacity
[29]. Let Cpv,ϕ

n denote the capacity of n-th PV. Let N denote

the set of PV. Then, the confidence interval of ϵpv,ϕn,t can be
described as [−klow,ϕ

n,t , kup,ϕn,t ]Cpv,ϕ
n , where klow,ϕ

n,t and kup,ϕn,t

are lower and upper bounds coefficients for the confidence
interval. The PV generation confidence interval can be further
rewritten as

P pv,ϕ
n,t ∈

[(
kf,ϕn,t − klow,ϕ

n,t

)
Cpv,ϕ

n ,
(
kf,ϕn,t + kup,ϕn,t

)
Cpv,ϕ

n

]
,

∀t ∈ T , (3)

where parameter kf,ϕn,t , klow,ϕ
n,t and kup,ϕn,t can be extracted from

historical data. kf,ϕn,t is the forecast expectation of PV per
unit. The load demand’s expectation and confidence interval
are assumed known parameters, and load demand range is
described as

P l,ϕ
m,t ∈

[
P l,f,ϕ
m,t − P low,ϕ

m,t , P l,f,ϕ
m,t + Pup,ϕ

m,t

]
,∀t ∈ T , (4)

where P low,ϕ
m,t and Pup,ϕ

m,t are respectively the lower and upper
bounds of load demand confidence interval.

B. Power Flow Model

Both balanced and unbalanced distribution networks are the
focus of this work, we thus employ a three-phase AC power
flow model. At the first stage, the model determines HC,
location, and size of SVC.

1) Power Flow Equation: Mutual impedance of branches
is abandoned from impedance matrix because they are much
smaller than the self-impedance [25], [30]. Therefore, a phase-
decoupled power flow model is established. Let I be the set
of all nodes, V ϕ

i,t be the voltage magnitude of i-th node at t,
and θϕij,t be the phase angle difference between i and j at t.
The net real and reactive power at node i of phase ϕ are

Pϕ
i,t=

∑
j∈I

V ϕ
i,tV

ϕ
j,t

(
Gϕ

ij cos θ
ϕ
ij,t +Bϕ

ij sin θ
ϕ
ij,t

)
,∀t ∈ T , (5)

Qϕ
i,t=

∑
j∈I

V ϕ
i,tV

ϕ
j,t

(
Gϕ

ij sin θ
ϕ
ij,t −Bϕ

ij cos θ
ϕ
ij,t

)
,∀t ∈ T , (6)

where Gϕ
ij and Bϕ

ij denote respectively conductance and
susceptance components of the admittance matrix.

2) Unit Constraints: We let P pv,s,ϕ
n,t , Qpv,s,ϕ

n,t , θpv,ϕn and
θpv,ϕn represent the scheduled active power, reactive power,
lower and upper limit of power factor angle of PV. Let P g,ϕ

l,t ,
Qg,ϕ

l,t , Cg,ϕ
l , αp,ϕ

l , αq,ϕ
l , and θg,ϕl denote the active power,

reactive power, capacity, minimum output coefficient, coef-
ficient of maximum phase-lead operation, and power factor
angle for GTG, respectively. Let λsvc,ϕ

r represent decision
variable that indicates whether SVC is installed. Let Qsvc,ϕ

r,t ,
Xsvc,ϕ, Csvc,ϕ

r , and Csvc,ϕ
r respectively denote reactive power,
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number, capacity, and maximum allowable capacity for SVC.
We formulate constraints as follows:

P pv,s,ϕ
n,t = kf,ϕn,tC

pv,ϕ
n ,∀n ∈ N ,∀t ∈ T , (7)

− P pv,s,ϕ
n,t tan θpv,ϕn ≤ Qpv,s,ϕ

n,t ≤ P pv,s,ϕ
n,t tan θpv,ϕn ,

∀n ∈ N ,∀t ∈ T , (8)

αp,ϕ
l Cg,ϕ

l ≤ P g,ϕ
l,t ≤ Cg,ϕ

l ,∀l ∈ L,∀t ∈ T , (9)

− αq,ϕ
l Cg,ϕ

l ≤ Qg,ϕ
l,t ≤ Cg,ϕ

l tan θg,ϕl ,∀l ∈ L,∀t ∈ T , (10)

− Csvc,ϕ
r ≤ Qsvc,ϕ

r,t ≤ Csvc,ϕ
r ,∀r ∈ R,∀t ∈ T , (11)

0 ≤ Csvc,ϕ
r ≤ λsvc,ϕ

r Csvc,ϕ
r , λsvc,ϕ

r ∈ {0, 1},∀r ∈ R, (12)∑
r∈R

λsvc,ϕ
r = Xsvc,ϕ, (13)

where L and R stand for sets of GTG and SVC, respectively.
Constraint (7) represents the relation between the PV capacity
and its output. Constraint (8) denotes that the reactive power
of PV inverter can be adjusted within the predetermined
range. GTG output is limited by (9) and (10). Constraint (11)
represents lower and upper bounds of the reactive power SVC
provides. Constraint (12) indicates that the SVC capacity is
zero if it is not installed. Constraint (13) shows that the total
number of installed SVCs is equal to Xsvc,ϕ. The ramping
constraints, start-up and shut-down constraints, and minimum
up and down time constraints of GTG are ignored due to its
characteristics of fast start-up time and ramping.

3) Security Constraints: The overvoltage is a major con-
cern that utilities have for high PV penetration [6], [11].
Following [6], [11], this paper considers the voltage limit
as the security constraint when determining HC. Besides,
line thermal capacity constraints are also considered and
several linear box constraints are employed to approximate
the quadratic constraint [25]. It is possible to consider other
security constraints within the proposed model. The security
limit is modeled as

V ϕ2 ≤ V ϕ
i,t

2
≤ V ϕ2

, ∀i ∈ I,∀t ∈ T , (14)

− Sϕ
ij ≤ Pϕ

ij,t ≤ Sϕ
ij ,∀(i, j) ∈ B,∀t ∈ T , (15)

− Sϕ
ij ≤ Qϕ

ij,t ≤ Sϕ
ij ,∀(i, j) ∈ B,∀t ∈ T , (16)

−
√
2Sϕ

ij ≤ Pϕ
ij,t +Qϕ

ij,t ≤
√
2Sϕ

ij ,∀(i, j) ∈ B,∀t ∈ T ,
(17)

−
√
2Sϕ

ij ≤ Pϕ
ij,t −Qϕ

ij,t ≤
√
2Sϕ

ij ,∀(i, j) ∈ B,∀t ∈ T ,
(18)

where V and V̄ are voltage lower and upper bounds. Sϕ
ij is

the apparent power capacity of distribution line (i, j).

C. Uncertainty Accommodation

When the uncertainty is materialized, it is accommodated
by the flexible resources in the system. This paper employs
affine policy to implement the recourse actions of controllable
resources to accommodate the uncertainty. Affine policy can
be at least traced back to the 1950s in multi-stage stochastic
programming [31], and is relevant to the linear controller in
Control community. It provides closed-form control signal
once uncertainty is materialized. In the power industry, a

Fig. 2. Comparison of PV confidence interval, Optimal Injection Range
(OIR), and capacity.

similar concept is adopted in AGC. Next, we model the
recourse action with affine policy in the distribution network.
Let ϵt ∈ RNu denote the PV output and load demand
uncertainty vector. Nu is the length of the uncertainty vector.
We then define the recourse action as{

yP
t (ϵt) ≜ FP

t ϵt,y
Q
t (ϵt) ≜ FQ

t ϵt,

yV
t (ϵt) ≜ FV

t ϵt,y
θ
t (ϵt) ≜ F θ

t ϵt,
ϵt ∈ Ut,∀t ∈ T ,

(19)
where FP

t , FQ
t , FV

t and F θ
t are matrices that map uncertainty

to changes of real power, reactive power, voltage magnitude,
and phase angle, respectively. Ut is the uncertainty set to be
determined together with HC, and is defined as

Ut ≜
{
ϵt ∈ RNu : −udown

t ≤ ϵt ≤ uup
t

}
,∀t ∈ T , (20)

where udown
t and uup

t denote the uncertainty downward and
upward limit, respectively. When uncertainty ϵt is materialized
at Stage-2, Pt + yP

t (ϵt), Qt + yQ
t (ϵt), Vt + yV

t (ϵt), and
θt+yθ

t (ϵt) are new variables obtained, and they respect power
flow equation (5)-(6), unit constraints (7)-(13), and security
constraints (14)-(18).

As Ut is optimally determined, Ut is called Optimal
Injection-Range (OIR). It is related to HC, and we formulate
constraints as follows

P pv,s,ϕ
n,t + uup,ϕ

n,t ≥
(
kf,ϕt + kup,ϕt

)
Cpv,ϕ

n ,∀n ∈ N ,∀t ∈ T ,
(21)

P pv,s,ϕ
n,t − udown,ϕ

n,t ≤
(
kf,ϕt − klow,ϕ

t

)
Cpv,ϕ

n ,∀n ∈ N ,

∀t ∈ T , (22)

uup,ϕ
m,t ≥ Pup,ϕ

m,t ,∀m ∈M,∀t ∈ T , (23)

udown,ϕ
m,t ≥ P low,ϕ

m,t ,∀m ∈M,∀t ∈ T , (24)

which guarantee that PV output and load demand in the
confidence interval can always be accommodated in OIR.
Fig. 2 illustrates the relationship between uncertainty, confi-
dence interval, and OIR of PV.

With aforementioned constraints, the uncertainty-proof HC
can be obtained by solving the optimization problem below

(P) max
∑
n∈N

Cpv,ϕ
n

s.t. (5)− (24).

We will show how to solve problem (P) in short. As a
side note, the investment cost can be added to the model if
necessary, and the solution techniques still apply. It is also
possible to model other equipment, such as online tap changer
(OLTC).
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III. A HYBRID RELAXATION BASED SOLUTION APPROACH

The proposed adjustable model (P) is a nonlinear program-
ming problem. First, the power flow model is nonlinear and
nonconvex. Second, the affine recourse action at the second
stage has introduced more nonlinear terms. Third, the model
has variable uncertainty set that is relevant to HC. To overcome
these challenges, we propose a novel hybrid relaxation solution
approach in this section. The basic idea is to use strong
relaxation techniques at Stage-1 to get (near) exact solution for
the output schedule. At Stage-2, we propose a linearized power
flow model at the point attained from Stage-1. The rationale
of the hybrid relaxation is to provide a good nominal point for
linearization, which is used both in affine policy and power
flow approximation.

A. Second Order Cone Relaxation at Stage-1

At the first stage, the second-order cone (SOC) relaxation is
employed to convexify the nonconvex terms. SOC relaxation
is an effective tool to convexify the regular power flow model
in radial distribution networks [32] [33]. For self-contained
reasons, we present SOC relaxation here. By introducing

Wϕ
i,t ≜V ϕ

i,t

2
/
√
2, ∀i ∈ I,∀t ∈ T (25)

Rϕ
ij,t ≜V ϕ

i,tV
ϕ
j,t cos θ

ϕ
ij,t, ∀i ∈ I,∀t ∈ T (26)

Tϕ
ij,t ≜V ϕ

i,tV
ϕ
j,t sin θ

ϕ
ij,t, ∀i ∈ I,∀t ∈ T , (27)

we rewrite (5) and (6) as

Pϕ
i,t =

∑
j∈I

(
Gϕ

ijR
ϕ
ij,t +Bϕ

ijT
ϕ
ij,t

)
,∀t ∈ T , (28)

Qϕ
i,t =

∑
j∈I

(
Gϕ

ijT
ϕ
ij,t −Bϕ

ijR
ϕ
ij,t

)
,∀t ∈ T , (29)

Rϕ2

ij,t + Tϕ2

ij,t = 2Wϕ
i,tW

ϕ
j,t,∀t ∈ T . (30)

The flow equations (28) and (29) are linear in Rϕ
ij,t and

Tϕ
ij,t. We relax (30) to a inequality constraint as

Rϕ2

ij,t + Tϕ2

ij,t ≤ 2Wϕ
i,tW

ϕ
j,t,∀t ∈ T . (31)

B. Linearization at Stage-2

Although SOC relaxation works well in regular power
flow problems, it becomes difficult to convexify the recourse
action (19) when considering the uncertainty. In the power
community, linearized power flow models with high accuracy
recently gain much attention [34]. They are attractive as linear
models often have good computational performance. In order
to capture the recourse action at Stage-2, we propose a novel
linearized power flow model that integrates SOC relaxation.
The rationale is to leverage the accuracy of SOC relaxation for
both linearization and affine policy. In fact, affine policy has
close relation with the first-order Taylor expansion, especially
when the uncertainty is small. Inspired by [34]–[36], we
present two assumptions as follows.

Assumption 1. Voltage phase angle difference at two con-
nected nodes is “small”.

Assumption 2. Voltage magnitude is close to 1.0 p.u..

They are true in general for the distribution network. Fol-
lowing these two assumptions, we have

cos θϕij,t ≈ 1− 1

2
θϕ

2

ij,t, (32)

V ϕ
i,tV

ϕ
j,tθ

ϕ2

ij,t ≈ θϕ
2

ij,t, (33)

θϕij,t ≈ V ϕ
i,tV

ϕ
j,t sin θ

ϕ
ij,t. (34)

Let the nominal point be
(
V ϕ(0)

i,t , θϕ
(0)

ij,t

)
, which are known.

We establish the proposition below to linearize the power flow
model.

Proposition 1. Given nominal point, the KCL equation with
uncertainty can be approximated by

P̂ϕ
i,t (ϵt) =

∑
j∈I

(
Gϕ

ij

Ŵϕ
i,t (ϵt) + Ŵϕ

j,t (ϵt)√
2

+Bϕ
ij T̂

ϕ

ij,t (ϵt)

−Gϕ
ij

√2V ϕ(0)

i,t − V ϕ(0)

j,t

V ϕ(0)

i,t + V ϕ(0)

j,t

(
Ŵϕ

i,t (ϵt)− Ŵ
ϕ

j,t (ϵt)
)
− 1

2
θϕ

(0)

ij,t

2

+θϕ
(0)

ij,t T̂
ϕ

ij,t (ϵt)−
1

2

(
V ϕ(0)

i,t − V ϕ(0)

j,t

)2))
,∀t ∈ T , (35)

Q̂ϕ
i,t (ϵt) =

∑
j∈I

(
−Bϕ

ij

Ŵϕ
i,t (ϵt) + Ŵϕ

j,t (ϵt)√
2

+Gϕ
ij T̂

ϕ

ij,t (ϵt)

+Bϕ
ij

√2V ϕ(0)

i,t − V ϕ(0)

j,t

V ϕ(0)

i,t + V ϕ(0)

j,t

(
Ŵϕ

i,t (ϵt)− Ŵ
ϕ

j,t (ϵt)
)
− 1

2
θϕ

(0)

ij,t

2

+θϕ
(0)

ij,t T̂
ϕ

ij,t (ϵt)−
1

2

(
V ϕ(0)

i,t − V ϕ(0)

j,t

)2))
,∀t ∈ T . (36)

Proof. By substituting (32) and (33) into (5) and (6), we have
the following equations:

Pϕ
i,t ≈

∑
j∈I

(
Gϕ

ij

V ϕ2

i,t + V ϕ2

j,t

2
+Bϕ

ijV
ϕ
i,tV

ϕ
j,t sin θ

ϕ
ij,t

−
Gϕ

ij

2

(
V ϕ2

ij,t + θϕ
2

ij,t

))
,∀t ∈ T , (37)

Qϕ
i,t ≈

∑
j∈I

(
−Bϕ

ij

V ϕ2

i,t + V ϕ2

j,t

2
+Gϕ

ijV
ϕ
i,tV

ϕ
j,t sin θ

ϕ
ij,t

+
Bϕ

ij

2

(
V ϕ2

ij,t + θϕ
2

ij,t

))
,∀t ∈ T , (38)

where V ϕ2

ij,t =
(
V ϕ
i,t − V ϕ

j,t

)2
. We then establish following

equations

θϕ
2

ij,t ≈ 2θϕ
(0)

ij,t θ
ϕ
ij,t − θϕ

(0)

ij,t

2

≈ 2θϕ
(0)

ij,t V
ϕ
i,tV

ϕ
j,tsin θ

ϕ
ij,t − θϕ

(0)

ij,t

2

,

(39)

V ϕ2

ij,t ≈ 2V ϕ(0)

ij,t V ϕ
ij,t − V ϕ(0)

ij,t

2

≈ 2V ϕ(0)

ij,t

V ϕ2

i,t − V ϕ2

j,t

V ϕ(0)

i,t + V ϕ(0)

j,t

− V ϕ(0)

ij,t

2

(40)
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The first and third approximations follow Assumption 1
and the first-order Taylor expansion, and the second ap-
proximation is from (34). According to Assumption 2, the
last approximation follows V ϕ

ij,t = V ϕ
i,t − V ϕ

j,t ≈ (V ϕ
i,t −

V ϕ
j,t)(V

ϕ
i,t+V ϕ

j,t)/(V
ϕ(0)

i,t +V ϕ(0)

j,t ). By replacing V ϕ
i,tV

ϕ
j,t sin θ

ϕ
ij,t

and V ϕ2

i,t /
√
2 with Tϕ

ij,t and Wϕ
i,t, respectively, and substituting

(39) and (40) into (37) and (38), we obtain the proposed
linearized power flow equations.

C. Surrogate Affine Approximation

As the PV capacity is to be determined, the uncertainty
set for PV output is variable in problem (P). Regular affine
policy based methods thus cannot solve it directly. For notation
simplicity, we rewrite the relaxed model in compact form

(P1) max
x,z,F

cTx (41)

s.t. Ax+Nz ≤ h, (42)
∥Kbz∥2 ≤ Jbz,∀b ∈ B, (43)
Bx+Eϵ+ Sz +CPyP (ϵ)

+CQyQ(ϵ) +Czyz(ϵ) ≤ d,∀ϵ ∈ U , (44)

where x includes capacity and scheduled output of DER,
location of SVC, and OIR. The variable z includes auxiliary
variables (25)-(27). Equation (7)–(18), (21)-(24), (28) and (29)
are rewritten in (42). (31) is represented by (43). Equation
(35)-(36), unit constraints and security constraints at the
second stage are rewritten in (44). Although the SOC and
linearization reduce the non-linearity, the relaxed model is still
computationally intractable due to the variable uncertainty set
U and affine policy in equation (44).

We employ the Surrogate Affine Approximation (SAA)
method to replace the variable uncertainty set with a determin-
istic one [28]. First, we introduce a set of surrogate variables

0 ≤ δLB ≤ 1, 0 ≤ δUB ≤ 1,

and a surrogate function

s(ULB,UUB) ≜ UUBδUB −ULBδLB, (45)

where ULB = diag
(
udown

)
and UUB = diag (uup).

Equation (44) is then recast as

Bx+ Sz + π · 1 ≤ d, (46)

CP F̂
P
+CQF̂

Q
+CzF̂

z
+E[−ULB,UUB] ≤ π, (47)

π ≥ 0, (48)

where π is a matrix of non-negative multipliers. F̂P , F̂
Q

and
F̂

z
are new surrogate matrices. The hybrid relaxation model

is thus formulated as

(P2) max
x,z,F̂ ,π

cTx

s.t. (42)− (43), (46)− (48).

(P2) is an SOC problem, and can be solved efficiently using
the off-the-shelf solvers.

Fig. 3. Hybrid model with SOC relaxation at Stage-1 and linearization at
Stage-2. Nominal point for linearization approximates to the solution point
with iterations.

Algorithm 1 Successive Hybrid Relaxation Algorithm
Input: Nk: maximum iteration time; ∆: maximum L2 norm
Output: optimal x∗, z∗, F̂ ∗, π∗

1: Initialization: v(1) ← 1, θ(1) ← 0, δ(1) ←∞, k ← 1
2: while k < Nk or δ(k) ≥ ∆ do
3: Update nominal point (v(0), θ(0)) ← (v(k), θ(k))
4: Linearize power flow at Stage-2 based on (35)-(36)
5: Formulate problem (P2)
6: Solve (P2), get (x(k+1), z(k+1), F (k+1), π(k+1))
7: Extract (v(k+1), θ(k+1)) from z(k+1)

8: δ(k+1) ← ∥(v(k+1) − v(k),θ(k+1) − θ(k))∥2;
9: k ← k + 1;

10: end while

D. Successive Hybrid Relaxation Algorithm
The linear power flow (35)-(36) at Stage-2 is linearized at

the nominal point based on Taylor approximation. However,
the solution point may be different from the nominal point.
In the meantime, the solution point also serves as the base
point for the uncertainty accommodation, and the affine matrix
is an analogy to the gradient in Taylor approximation. We
present a successive hybrid relaxation algorithm below to find
the converged solution and nominal point. Fig. 3 illustrates
the basic idea. The nominal point approximates to the solution
point with iterations.

In Algorithm 1, SOC problem (P2) is iteratively solved.
The nominal point is updated with the voltage information
extracted from the solution to (P2).

IV. CASE STUDY

The simulations are performed with a single-phase 141-
node distribution feeder of nominal voltage 12.47 kV [37]
and a three-phase IEEE 33-bus distribution feeder of nominal
voltage 12.66 kV [38]. Typical load and PV profiles are from
[39]. The load curves and PV forecast are obtained based on
the average value of hourly historical data. Without loss of
generality, assume uncertainty around forecast value follows
Gaussian distribution, and we use the 95% confidence interval
of PV and load deviation. All cases are carried out in a server
with Intel(R) Xeon(R) Gold 6140 (2.30 GHz). The proposed
solution approach is programmed in Matlab 2021b and solved
by Mosek 9.3.

A. Single-phase 141-node Test System
Fig. 4 illustrates the single-line diagram of the 141-node

distribution feeder. The feeder includes 84 load nodes with
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Fig. 4. Single-line diagram of the 141-node distribution feeder. The location
and size of SVC are determined among the SVC candidate regions. The
placement and parameters of GTG are predefined.

Fig. 5. PV scheduled output, HC, OIR and the confidence interval obtained
by the proposed model under (a) typical day for summer (b) four typical days
for various seasons.

the peak being 11.9 MW and 7.4 MVar. The lower and
the upper voltage limits are set as 0.95 p.u. and 1.05 p.u.,
respectively. Line thermal limits are relaxed in this system
due to their abundant capacity. Utility-scale PVs are installed
at node 30, 31, 32, 140, 141, 78, 79, 80, 81, and 82. Each
PV system is assumed to operate at the unity power factor.
Two SVCs are installed at two nodes out of node 42, 43,
73, 74, 75, 96, 97, 98, 99, and 100. The voltage ratios of
three transformers are set to 1:1.04, 1:1.015 and 1:1.035,
respectively. In this simulation, GTGs already deployed in the
system are dispatched to increase uncertainty-proof HC. Thus,
the placement and parameters of GTG are predefined. Node
26 and 122 are with GTGs.

In this part, we first analyze uncertainty-proof HC results
obtained from the proposed approach with PV output un-
certainty, and then investigate the convergence performance.
Sensitivity studies are then performed to check the impact on
HC from SVC and GTG. Next, to check the accuracy and HC
improvement, we compare the result of the proposed model
and other methods. Finally, the impact of load uncertainty is
discussed.

Fig. 6. Voltage profile in the worst-case scenario where PV out deviate from
forecast value to the upper bound of OIR. (96 profiles for t=1 to 96).

1) Uncertainty-proof HC: Fig. 5(a) presents the converged
result of HC, PV scheduled output, and OIR in summer. The
attained uncertainty-proof HC is 10.3MW, which is 86.6%
of annual peak load. The figure shows that the confidence
interval of PV output is always within OIR. It indicates that
any PV output uncertainty within the confidence interval can
be mitigated by re-dispatch actions. The minimum net load is
-0.5 MW at 12:00 (i.e., -0.5 MW = the load of 9.8 MW - PV
output of 10.3 MW), and it is equal to the sum of network loss
and minimum GTG output. PV power output will be curtailed
if HC continues to increase. Thus, the uncertainty-proof HC
obtained by the proposed model is maximal. On the other
hand, we also perform the simulations for various seasons,
and the result is shown in Fig. 5(b). It is observed that HC
is almost the same as that attained for summer. That shows
the summer net load is a dominant factor in determining HC
in this case. Besides, the solution time for summer season is
about 190s, which is approximately 62% lower than that for all
seasons. Hence, utility can get the HC quickly by considering
the summer season only.

Fig. 6 illustrates the voltage profile of four seasons after
re-dispatch in the worst-case scenario, in which the PV output
deviates from a forecast value to the upper bound of OIR.
It is observed that voltage magnitudes range from 0.97 to
1.05 and no over-voltage issue occurs. It again validates any
uncertainty of PV output can be handled by the proposed
recourse action without overvoltage violation. Thus, utility can
use the explicit policy directly to dispatch SVCs and GTGs
when PV uncertainty is materialized, and optimal power flow
is eliminated in the process of re-dispatch.

As a side note, integer constraints for the SVC location
are relaxed first and then enforced to speed up solving time.
Node 43 and 75 are selected for SVC siting by the model, and
their capacities are determined as 2.43 MVar and 3.90 MVar,
respectively.

2) Convergence Performance: To illustrate the conver-
gence of the algorithm, Fig. 7 presents the Euclidean distance
(L2 norm) curve versus iteration number and the comparison
of nominal point and converged solution. It is noted that the
norm includes all nodes and periods. As shown in (a), the
distance decreases with iteration in general. The proposed
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Fig. 7. Euclidean distance between the nominal and solution point with
iteration and the comparison of the nominal point and converged solution
point. (a) Euclidean distance, (b) Voltage magnitude, (c) Voltage phase angle.

TABLE I
CASES FOR SENSITIVITY ANALYSIS WITH DIFFERENT SIZES AND

LOCATIONS OF GTG AND SVC

GTG1
Loc.

GTG2
Loc.

SVC
Loc.

GTG1
Cap.

GTG2
Cap.

SVC
Cap.

Case 1 26 122 43 0MW 0MW 0-4MVar
Case 2 26 122 43 2.05MW 2.05MW 0-4MVar
Case 3 95 122 43 2.05MW 2.05MW 0-4MVar
Case 4 26 122 96 0MW 0MW 0-4MVar
Case 5 26 122 96 2.05MW 2.05MW 0-4MVar

Fig. 8. HC versus SVC with different cases.

successive hybrid relaxation algorithm takes 20 iterations to
get the converged solution. The voltage magnitude distance
reduces about 99% (i.e., (1.25 - 0.012)/1.25, and the phase an-
gle distance decreases by 99% (i.e., (1.58-0.012)/1.58≈99%).
After it converges, the solution point is close to the nominal
point. (b) and (c) show the detailed voltage magnitude and
phase angle curves comparison for all nodes at period 36. The
largest voltage magnitude gap is 0.00056 p.u and angle gap is
0.00037 rad.

3) Sensitivity Analysis: The sensitivity studies are per-
formed to investigate the impact on HC value from GTG and
SVC size and location. As shown in Fig. 4, utility-scale PVs
are installed in the two utility-scale PV regions. Case studies
shown in Table I were performed. In Fig. 8, five different

Fig. 9. The convergence comparison of HAPF and LAPF models. Power
mismatch at Stage-1 (left). Power mismatch at Stage-2 (right).

curves represent the maximum HC solved by the proposed
model versus SVC with different cases, respectively. It is
observed that curves of cases 1, 2, 3 and curves of cases 4,
5 are close to each other, respectively. It indicates that HC
value change is small even GTG capacity has a change of 4.1
MW with different locations. For instance, adding two GTGs
increases HC by about 0.22 MW (i.e., 8.62 MW – 8.40 MW
= 0.22 MW). On the other hand, the curve of case 1 shows
that HC increases about 29% (i.e. (9.9-7.0)/9.9) when SVC
capacity grows from 0 MVar to 4 MVar. The curves of cases
2 and 3 present similar results. Furthermore, the location of
SVC also affects the maximum HC. As shown in the curves
of case 4, the increase of HC is reduced to about 15% (i.e.
(8.2-7.0)/8.2) when SVC is located far away from PV regions.
It indicates HC is more sensitive to the SVC capacity and
location. The reason is that SVC can provide flexible reactive
power support to lower the voltage caused by PV generation.
The closer SVC is located to the PV regions, the greater its
effect on improving maximum HC.

From utility perspective, this analysis also offers a method
to guide the planning department to determine maximum HC
with different SVC sizes. From Fig.8, there is a positive
correlation between the maximum HC and SVC size. Utilities
can obtain the maximum HC directly according to two other
results of maximum HC with different SVC sizes.

4) Comparison of Power Mismatch: The comparison of
model accuracy is performed for the proposed hybrid ad-
justable power flow model (HAPF) and linearized adjustable
power flow (LAPF). In the LAPF model, linearized power flow
(35)-(36) is used at both Stage-1 and -2. The same placement
of PV, GTG, SVC, load and test feeder mentioned in Fig.4 is
used for both HAPF and LAPF.

To compare the accuracy, we calculate the power mismatch
based on the exact Kirchhoff’s Current Law (KCL) and
Kirchhoff’s Voltage Law (KVL) equations for each iteration,
respectively. It is noted that the norm of power mismatch
includes all nodes at the 36th period as an instance. As for
Stage-2, to compare the power mismatch, assuming that PV
uncertainty are both equal to 2.50 MW for HAPF and LAPF,
and then the re-dispatch of controllable resources is obtained
by F̂ . The real and reactive power mismatches are illustrated
in Fig. 9. It is observed that both HAPF and LAPF models can
quickly converge at Stage-1 and -2. According to the figure
on the left, the HAPF almost converges after four iterations at
Stage-1, and LAPF also reaches its minimum power mismatch
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TABLE II
THE COMPARISON OF HC SOLVED BY MONTE CARLO BASED METHODS AND HAPF IN DIFFERENT SVC CAPACITY AND GTG CAPACITY

Min. HC* Max. HC* Max. HC** Max.HC*** Max.HC****

SVC(MVar) GTG(MW) GTG(MW) GTG(MW) GTG(MW) GTG(MW)
0 4.1 0 4.1 0 4.1 0 4.1 0 4.1

0 1.436 1.461 6.818 6.821 6.823 6.828 7.018 7.225 7.055 7.284
0.5 1.436 1.495 6.846 6.862 7.144 7.278 7.346 7.569 7.414 7.639
1 1.467 1.557 6.881 7.012 7.485 7.727 7.698 7.944 7.770 8.002

1.5 1.467 1.590 6.881 7.190 7.796 8.098 8.072 8.278 8.129 8.349
2 1.478 1.601 6.931 7.258 7.863 8.243 8.401 8.619 8.494 8.728

2.5 1.503 1.660 7.076 7.273 8.549 8.590 8.760 8.978 8.862 9.087
3 1.543 1.705 7.296 7.517 8.756 9.058 9.127 9.349 9.230 9.467

3.5 1.607 1.778 7.557 7.794 9.220 9.315 9.501 9.728 9.620 9.841
4 1.643 1.787 7.823 8.047 9.639 9.859 9.880 10.045 9.999 10.139

[*] HC solved by PFCMC; [**] HC solved by OPFMC; [***] HC solved by HAPF; [****] HC solved by OPFMC based on HAPF.

at iteration 4. The figure on the right shows similar results for
convergence speed. The figure shows that HAPF outperforms
LAPF in terms of accuracy by about one order of magnitude.
The L2 norm of HAPF mismatch at Stage-1 is less than 0.01
MW. In contrast, the mismatch of LAPF model is about 0.3
MW. The proposed HAPF reduces the mismatch by more than
90%. It shows similar trends at Stage-2 according to the figure
on the right of Fig. 9. That is mainly because HAPF has better
accuracy at Stage-1, which also provides a better nominal point
for linearization and uncertainty accommodation at Stage-2.

5) HC Comparison via Monte Carlo Simulation: We com-
pare the proposed HAPF with two Monte Carlo based methods
below:

• Power Flow Calculation based Monte Carlo (PFCMC)
simulation for HC evaluation, in which controllable re-
sources are static;

• Optimal Power Flow based Monte Carlo (OPFMC) simu-
lation for HC evaluation, in which controllable resources
are adjustable.

The same placement of PV, GTG, SVC, load and test feeder
mentioned in case 2 of sensitivity analysis is used as an
instance.

PFCMC: The algorithm in [11] is used. A massive sampling
of PV deployment scenarios is generated in multi-time series.
The voltage magnitude is regarded as the security limit. By
solving multi-period power flow, we get the maximum voltage
in each PV deployment scenario of different PV penetration.

Fig. 10 shows the results of maximum node voltages for all
PV deployments in the system without GTG and SVC. The
hosting capacity is estimated based on 2500 PV deployment
scenarios. From Fig. 10, when PV penetration exceeds 1.436
MW, overvoltage occurs in some PV configuration scenarios,
as shown at point A. Additionally, all PV deployment scenar-
ios cause violation if the penetration exceeds 6.818 MW at
point B. Therefore, in the evaluation of PFCMC simulation
algorithm, the minimum and maximum HC are 1.436 MW
and 6.818 MW, respectively. In contrast, HAPF finds an HC
of 7.018 MW in the same system. More importantly, there will
be no voltage or unit violations with recourse action.

Table II presents minimum and maximum HCs solved by
Monte Carlo based methods and HAPF in different SVC
and GTG. The first column lists different SVC capacities,
and column 2-11 presents HCs with various GTG capacities.

Fig. 10. Maximum node voltages for multiple PV deployment scenarios.

For example, column-3 shows the minimum HC solved by
PFCMC with GTG capacity of 4.1 MW. It is observed that in
general HC increases as the size of SVC and GTG become
larger. For example, when SVC is 1 MVar, adding 4.1 MW
GTG increases minimum HC from 1.467 MW to 1.557 MW.
However, the maximum HC from PFCMC is smaller than
that from HAPF in all cases. That is mainly because that the
controllable resources are static in PFCMC, while they are
adjustable by re-dispatch in HAPF.

OPFMC: In this part, an OPFMC simulation is to determine
the maximum HC. The purpose of this simulation is to adjust
GTG and SVC to avoid voltage limit violations.

Comparing column-4 to -5 and column-6 to -7 of Table II,
OPFMC provides larger maximum HC than PFCMC. That is
mainly because OPFMC can optimize the output of control-
lable resources to obtain a better maximum HC than PFCMC.
However, HC from OPFMC is still smaller than that from
HAPF. That is mainly because OPFMC’s optimality is limited
by its PV deployment scenarios while HAPF finds the near-
optimal solution in the first place. Fig.11 shows the result
of maximum HC from OPFMC with the increasing scenario
numbers. It shows that the maximum HC improves in the first
1500 scenarios. However, the maximum HC remains almost
unchanged after 2000 scenarios.

Furthermore, to verify the result of HAPF, the ”optimal
PV deployment” in HAPF is fed to OPFMC. OPFMC with
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Fig. 11. Maximum HC for increasing scenario number of OPFMC (18 profiles
for 18 cases of different size of SVC and GTG).

2000 scenarios is performed again based on the deployment
of HAPF to find a larger HC. According to column-10 and
-11 of Table II, the result is almost equal to the maximum HC
of HAPF. Hence, the HC and linearized re-dispatch of HAPF
are near-optimal. Utility can also use this strategy to guide the
existing methods in determining the maximum HC.

In summary, the advantages of HAPF over Monte Carlo
based methods include higher maximum HC, readily deter-
mined re-dispatch policy, and the optimal placement of SVC.
As a side note, the dispatch policy of OPFMC is not available
as the materialized uncertainty is nearly impossible to match
these random scenarios exactly. In contrast, the dispatch policy
of HAPF is closed-form function of uncertainty, and respects
physical and security constraints. However, the solution time
of HAPF in each iteration is about 500s. In contrast, parallel
computing techniques can be easily applied in Monte Carlo
based methods with thousands of samples, and one sample
takes about 3s only.

6) Impact of Load Uncertainty: To analyze the impact
of load uncertainty, simulation with load uncertainty is per-
formed. The same placement of PV, GTG, SVC, load forecast
and test feeder mentioned in case 2 of sensitivity analysis is
used as an instance. Time resolution is set to 2 h in this part to
reduce the model size. We will report generalized techniques
to speed up optimization approach in future work.

Fig.12 (a) and (b) show the voltage profiles in the worst-case
scenario. The worst-case scenario is defined as the scenario
with the smallest net load, i.e., the highest PV power output
and lowest load demand in this paper. We get HC of 8.71
MW when the load uncertainty is not considered. As shown in
Fig.12 (a), the largest voltage magnitude is 1.06 in the worst-
case scenario. It indicates ignorance of load uncertainty may
lead to overvoltage. When load uncertainty is considered, HC
attained by HAPF is 5.04 MW, which is about 58% (i.e.,
58% = 5.04/8.71) of that not considering load uncertainty.
Its voltage profile is depicted in Fig.12 (b). The highest
voltage magnitude is 1.05 in Fig.12 (b). In other words, there
is no overvoltage. It indicates that HAPF considering load
uncertainty is more robust in dealing with the uncertainties.

Fig. 12. Comparison of (a) HAPF without load uncertainty and (b) HAPF
with load uncertainty in the worst-case scenario.

Fig. 13. The modified three-phase 33-bus distribution system.

B. Three-phase 33-bus Test System

The modified three-phase IEEE 33-bus distribution system
is shown as Fig. 13. The system includes 9 load buses with
the peak being 9.30 MW and 5.76 MVar. The lower and the
upper voltage limits are set to 0.95 p.u. and 1.05 p.u., and the
apparent power capacity of each branch is 3.5 MVA per phase.
Utility-scale PVs are installed at bus 17, 18, 32, 33. We assume
that PVs are single-phase integrated, and their power factors
can be controlled from -0.95 to 0.95. Two SVCs are installed
at two buses out of bus 24, 25, 30, 31, and they are both
three-phase devices. Bus 6 is with a three-phase GTG. The
voltage ratios of three transformers are set to 1:1.03, 1:1.035
and 1:1.03, respectively.

In this part, we first compare the mismatch of HAPF with
linearized adjustable DistFlow model (LAD), and then investi-
gate HC accuracy under unbalanced load levels and structure.
Next, we compare the truthfulness of HAPF with stochastic
method. Finally, the impact of PV inverter is discussed.

1) Comparison of Mismatch: The accuracy comparison is
performed for HAPF and LAD models. In the LAD model,
linearized DistFlow [23], [24], [27] is used at both Stage-
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TABLE III
MISMATCH COMPARISON OF HAPF TO LAD IN SEVERAL LOAD LEVELS

Rate Largest Pij Largest Qij Largest Vi

of Stage Mismatch Mismatch Mismatch
Basic (kW) (kVar) (1× 10−4 p.u.)
Load HAPF LAD HAPF LAD HAPF LAD

100% 1 0.8 40.6 0.7 28.1 2.9 5.7
2 2.7 46.8 4.8 32.8 2.9 18

95% 1 0.7 39.1 0.6 27.0 3.2 5.5
2 3.1 44.8 5.5 31.5 3.2 28

90% 1 0.8 35.4 0.7 24.5 2.7 5.1
2 3.0 42.5 5.3 29.9 2.7 24

85% 1 0.8 32.6 0.7 22.6 2.8 4.9
2 3.4 39.8 5.9 28.0 2.8 22

80% 1 0.8 33.0 0.6 22.9 2.8 4.8
2 3.5 38.8 5.8 27.6 2.8 28

[HAPF] hybrid adjustable power flow; [LAD] linearized adjustable DistFlow

1 and -2. Result from the backward/forward is used as a
benchmark against that from HAPF and LAD models. At
Stage-2, we assume that uncertainty for HAPF and LAD at
12:00 are both equal to 1.90 MW, and then the re-dispatch of
controllable resources is attained by F̂ . The largest power and
voltage mismatches under different load levels are illustrated
in Table III. It is observed that the largest Pij , Qij and Vi

mismatches are less than 50 kW, 40 kVar and 0.003 p.u.,
respectively. In the meantime, HAPF outperforms LAD in
terms of accuracy by about one order of magnitude in all three
columns. For instance, when the rate of basic load is 90 %,
the largest Pij mismatch at Stage-2 of HAPF is about 7.1%
(i.e., 3/42.5≈7.1%) of that of LAD. That is mainly because
HAPF is improved in the loss of power flow, which provides
a more accurate linearization and re-dispatch policy.

2) Comparison of HC Accuracy: Due to power and voltage
mismatch, HC solved by LAD models may be inaccurate.
Besides, the simplified single-phase HAPF model may not be
fully applicable for unbalanced systems. Nevertheless, they
are both valuable methods because of their simple model
complexity compared to three-phase HAPF. To analyze the
impacts on HC, the comparison is performed for the three-
phase HAPF (3p-HAPF), single-phase HAPF (1p-HAPF) and
three-phase LAD (3p-LAD) model. 3p-HAPF is used as a
benchmark against other methods. In the 1p-HAPF, the load,
SVC and GTG of the three phases are equally divided into
one phase.

Firstly, we analyze the impact of unbalanced load on HC
inaccuracy in a three-phase system with a balanced structure,
where SVCs and GTG are both single-phase integrated and
the capacity is the same for each phase. Fig.14 shows the
HC solved by 3p-HAPF, 1p-HAPF and 3p-LAD under five
unbalanced load levels. ”Load Unbalance Degree” represents
the ratio of the load of phase-A to the load of phase-C, and
the load of phase-B and -A are equal. Fig.14 shows that the
HC of 1p-HAPF is almost the same as the 3p-HAPF, while
the HC of 3p-LAD is smaller than that of other methods. It
indicates that the power and voltage mismatch is a major factor
affecting the HC inaccuracy in this case.

Then, we analyze the impact of unbalanced structure on HC
inaccuracy in a three-phase system with a balanced load. Two
single-phase SVCs are connected to phase-A and one single-

Fig. 14. The HC solved by 3p-HAPF, 1p-HAPF and 3p-LAD in the system
with balanced structure but unbalanced load.

Fig. 15. The HC solved by 3p-HAPF, 1p-HAPF and 3p-LAD in the system
with balanced load but unbalanced structure.

phase GTG is connected to phase-C. Fig. 15 shows the HC
values with different SVCs. ”SVC Cap.” means the capacity
of each SVC. It shows that the HC of 1p-HAPF is closer
to 3p-HAPF than that of 3p-LAD when the SVC capacity
is small. For example, when SVC capacity is 0.2 MVar, the
HC inaccuracy of 1p-HAPF is only 0.01 MW (i.e., 1.22 -
1.21 = 0.01), while that of 3p-LAD is 0.06 MW (i.e., 1.22 -
1.16 = 0.06). However, the inaccuracy of 1p-HAPF grows with
increasing SVC capacity. For instance, when SVC capacity is
0.8 MVar, the HC inaccuracy of 1p-HAPF is 0.1 MW, while
that of 3p-LAD is only 0.04 MW.

In a conclusion, the HC inaccuracy of 1p-HAPF depends
on the unbalance degree of system structure, while 3p-LAD is
hardly affected by system structure but is limited by power and
voltage mismatch. Generally, 1p-HAPF is acceptable to get the
HC for the system with a nearly balanced structure. However,
3p-LAD is more applicable than 1p-HAPF for a system with
a strongly unbalanced structure.

3) Comparison of Truthfulness: To demonstrate the effec-
tiveness, the two-stage stochastic linearized DistFlow model
(SLD) [23], [24] and the proposed model are compared. In the
SLD, the first stage decides HC and deployment of SVC before
the realization of uncertainty, and the second stage decision
variables depend on the uncertain realization. PV and load
uncertainties are considered in the two methods, and testing
results are shown in Table IV. As a side note, scenarios of
SLD are generated by Monte Carlo simulation in this case.

In Table IV, 100 out-of-sample scenarios generated by
Monte Carlo simulation are implemented to investigate the
truthfulness of HCs attained by these methods. ”Occurrence
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TABLE IV
COMPARISON OF HAPF WITH SLD

Method Scenario HC Occurrence Percentage
Num. (MW) of PV Curtailment (%)

SLD

1 2.74 92
10 2.24 30
50 2.14 8

100 2.08 6
HAPF Infinite 1.24 0

[HAPF] hybrid adjustable power flow; [SLD] stochastic linearized DistFlow

Percentage of PV Curtailment” represents the percentage of
the number of out-of-sample scenarios where PV curtailment
occurs. It shows that ”HC” solved by SLD under one forecast
scenario is as high as 2.74 MW, while PV curtailment occurs in
92% out-of-sample scenarios. The truthfulness of HC increases
gradually with the scenario number in SLD. When scenario
increases to 100, the HC decreases to 2.08 MW, and PV
curtailment occurs in 6% scenarios. It indicates that the ”HC”
of SLD is over-optimistic and the truthfulness is poor when
scenario number is small. In contrast, HAPF method considers
all possible scenarios, which are infinite. The HC attained by
HAPF is 1.24 MW, and there is no curtailment in out-of-
sample scenarios. That is mainly because that HAPF is robust
and immune from uncertainty.

4) Impact of Reactive Power: In this subsection, PV in-
verter is considered as a flexible resource to accommodate
uncertainties. The PV inverter can absorb reactive power to
lower the voltage level, increasing HC. In the simulation, two
single-phase SVCs of 0.2 MVar are connected to phase-A and
one three-phase GTG of 1.5 MW is integrated. Fig. 16. depicts
three lines to demonstrate the impact of absorbing reactive
power. The red dashed line is the voltage level without reactive
power control, and the red solid line represents the voltage
level with reactive power control, i.e. absorbing reactive by
PV inverter. The blue dotted line shows the amount of reactive
power at Bus 32.

As shown in the red dashed line, the largest voltage is
1.063 at time 12. By absorbing reactive power, the PV inverter
decreases the voltage level to 1.049 at time 12. It indicates
that PV inverter can help alleviate overvoltage. The HC
increases from 0.92 MW to 1.24 MW, about 74%, by using
PV inverter. Therefore, it shows that absorbing reactive power
helps increase the HC.

V. CONCLUSION

This paper presents an adjustable model to find the
uncertainty-proof hosting capacity (HC). The recourse action
in the adjustable model can expand the feasible region of the
problem determining HC. We are thus able to increase the
uncertainty-proof HC by utilizing the flexible resource in the
second stage. Furthermore, the proposed approach provides
the closed-form recourse actions when uncertainty occurs.
This work proposes a novel hybrid convexification approach
to solving the adjustable model. It integrates a successive
algorithm and convexification techniques. Simulations are
performed with a single-phase 141-node system and a three-

Fig. 16. Voltage magnitude and reactive power of PV at Bus-32 with and
without reactive power control in the worst-case scenario.

phase 33-bus system. The proposed approach shows promising
accuracy and robustness.

In future study, we plan to extend the approach to multistage
model with storage, and will reduce the model complexity with
novel data-driven approaches.
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