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Abstract—The continuous growth of variable renewable in-
tegration has greatly increased uncertainty and variability in
the power system, resulting in unprecedentedly high demand
for flexibility. Recently, there has been much attention in the
power industry to manage the flexibility and uncertainty via
market mechanisms. This paper presents a novel approach to
jointly clearing energy, reserve, and uncertainty with moment
information based on distributionally robust chance constraints
(DR-CC). Locational marginal prices (LMP) are derived for
both energy and reserve. Uncertainty is modeled with statistical
moments of historical forecast errors, and uncertainty marginal
prices (UMP) are defined to reflect the marginal cost of un-
certainty following the cost-causation principle. The congestion
cost of reserve trading is explicitly modelled, and is shown to
fully cover financial transmission right (FTR) underfunding. We
show that the proposed mechanism guarantees revenue adequacy
and provides appropriate incentives for efficient operation and
investment. Case studies are carried out to illustrate the impact of
the proposed market scheme, and its feasibility is demonstrated
on a testbed system based on a real-world 1934-bus grid.

Index Terms—Uncertainty Marginal Price, Flexibility, Loca-
tional Marginal Price, Distributionally Robust

NOMENCLATURE

Indices
t Index for time intervals.
i, l Indices for buses and lines.
j, k Indices for uncertainty sources.
ik Bus index of uncertainty source k.
Variables
d̃i,t, di,t Real and expected load of bus i.
r̃i,t, ri,t Real and expected renewable power output

of bus i.
gi,t Generator output of bus i.
ui,t UC decision variable for bus i.
Rup

i , Rdn
i Up/Down reserve by bus i.

P inj
i,t Net power injection at bus i.

Pl,t Power flow on branch l.
P up
l,sec, P

dn
l,sec Up/Down transmission security margins.

ξ Vector of uncertain deviations.
βi,k Balancing factor of i for uncertainty k.
xl,k Sensitivity of branch power flow l regarding

uncertain deviation k.
λi,t Energy LMP for i.
ηupR,i, η

dn
R,i Up/Down reserve LMP for i.

νconl,k Reserve congestion cost on branch l due to
uncertainty k.
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Cξ,i,k Uncertainty payment by k for flexibility at i.
ER,i,k Reserve payment to i for balancing k.
F con
l,i,k Reserve congestion cost on branch l for

mitigating uncertainty k from i.

Constants:

Γ Covariance matrix of uncertainty.
Γ

1
2 Decomposition of covariance matrix that

satisfies (Γ
1
2 )TΓ

1
2 = Γ.

P Correlation matrix of uncertainty.
µk, σk Mean and standard deviation of uncertain

deviation k.
ρk,j Correlation coefficient between k and j.
ϵi, ϵl Risk tolerance for bus i and branch l.
SFl,i Load shift factor of branch l for bus i.
Dξ Incidence matrix for uncertainty.
Ξ Uncertainty set for distributions of ξ.

I. INTRODUCTION

As more countries are targeting net-zero carbon emission
goals, the penetration of renewable energy has been fast grow-
ing in power systems worldwide, leading to a high level of
uncertainty and variability [1]. This poses a serious challenge
to the safe and reliable operation of power systems, and more
flexibility is needed to maintain the real-time power balance
[2].

In deregulated power markets, an important source of flexi-
bility is reserve, which is typically regarded as an ancillary
service (AS) and usually co-optimized with energy in the
security-constrained unit commitment (UC) and economic
dispatch (ED) problems [3]. The reserve requirement is often
decided by the independent system operator (ISO), and the
reserve price is obtained together with the energy price as a
byproduct of the ED [4]. However, the system-wide reserve
constraint may lead to deliverability issues [5], [6], as the
cheapest reserve may not be able to delivered to certain buses
due to transmission congestion. Some markets mitigate the
deliverability problem by applying zonal pricing [7]. However,
zonal prices do not fully resolve the deliverability problem,
and may also lead to fairness issues, as nodal prices are not
readily divided into zones with clear boundaries in a meshed
network [8].

In current markets, AS cost is often allocated to energy
consumers as fixed costs or additional tariffs. For example, the
PJM market assigns regulation obligation to each load serving
entity (LSE) based on its load-ratio share in the region [9].
The additional AS used by variable energy resources (VERs)
is paid by energy consumers rather than VER owners. VER
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owners thus lack incentives to mitigate their generation uncer-
tainty. Such practice cannot accurately reflect the uncertainty
impact on system operation, and may distort the price signal.

This paper aims to provide a market scheduling and nodal
pricing approach that co-optimizes energy and flexibility, pro-
viding proper incentives via marginal prices for both flexible
resources and uncertainty sources.

There is rich literature on reserve scheduling with uncer-
tainty in power system operation. Among them, a scenario-
based stochastic programming (SP) approach is used in [10]
for committing reserves with high penetrations of wind power.
To further mitigate risks, robust optimization (RO) is ap-
plied in [11] to minimize loss under the worst scenario. RO
guarantees an upper limit for system cost, but may result
in over-conservative decisions. A chance constrained (CC)
programming approach is employed in [12], [13], leading
to a predefined probability of constraint compliance. CC
programming allows customization of conservativeness, and
can be adjusted for various application scenarios with different
reliability requirements. However, the true distribution of
uncertainty can be hard to obtain in practice.

In recent years, there has been much discussion on distri-
butionally robust (DR) co-optimization of energy and reserves
[14]–[16], which optimizes dispatch against the worst possible
probability distribution. In these approaches, knowledge of
the underlying distribution is not necessarily required. In the
meantime, DR-based approaches can not only better leverage
historical data, but also avoid the conservativeness of tradi-
tional RO.

Integrating chance constraints into DR approaches, the dis-
tributionally robust chance-constrained (DR-CC) model [17]–
[21] guarantees the solutions satisfy constraints with a prede-
fined confidence level for any distribution within an ambiguity
set. A moment-based DR-CC reserve scheduling model is
proposed in [17], [18], resulting in a bilinear matrix inequality
(BMI) problem solved by sequentially convex optimization.
Reference [19] incorporates demand response, and extends
the uncertainty set by considering the uncertain availability of
elastic loads. The unit commitment problem is addressed in
[20], where the DR chance constraints are reformulated with
binary variables and are solved with a column-and-constraint
generation (C&CG) algorithm. In [21], a Wasserstein DR-
CC optimization method is proposed. A physically-bounded
bilinear reformulation is provided, which is solved by an
iterative algorithm with guaranteed convergence. Although
these works address the reserve scheduling problem with DR-
CC models, they do not provide a market mechanism.

More recently, DR or DR-CC based approaches have also
been applied to market design. A DR model is proposed in [22]
for the scheduling of integrated gas-electricity systems with
demand response, and LMPs are generated for both electricity
and gas markets. A transactive energy framework is proposed
in [23] using a DR model that coordinates the energy trading
of micogrids and the distribution system operator (DNO),
and reference [24] further considers coupled electrical and
gas microgrids. A DR optimal power flow (OPF) model is
presented in [25] to not only achieve the day-ahead scheduling
and pricing of electrical energy, but also provide incentives for

optimizing real-time balancing. These works focus the market
design of energy-only markets, and therefore do not resolve
the pricing issue of flexibility or uncertainty.

On the other hand, reference [26] proposes a novel frame-
work to price reserves using DR chance constraints. It is
expanded further in [27] to incorporate asymmetric balancing
policies and derive locational balancing prices. They recover
reserve cost from uncertainty sources, and cover multiple cases
with different balancing policies. Reference [28] designs a
chance-constrained peer-to-peer (P2P) joint energy and reserve
market, where prices for both energy and reserve are generated
in a distributed fashion using the alternating direction method
of multipliers (ADMM) method. Reference [29] further in-
troduces data-driven distributionally robustness, and accounts
for three-phase unbalanced microgrids. Although these works
offer frameworks for distributionally robust reserve trading,
they do not reflect the impact of recourse actions on network
constraints. Thus, they cannot guarantee reserve deliverability
in network congestion cases.

In order to guarantee the deliverability of reserve and
provide proper incentives, researchers have tried to design
locational marginal prices for reserve and uncertainty. Uncer-
tainty marginal prices (UMP) are proposed in [5] using robust
optimization. The UMPs work as prices for both uncertainty
and reserves, which are proven to form a competitive equi-
librium and guarantee revenue adequacy. However, the results
obtained from robust optimization might be too conservative
when the most severe contingencies only occur for a very
small probability. The idea of locational pricing is explored
in [30] for primary and secondary regulation reserves, where
reserve requirements are set as fixed values. In [6], [31],
uncertainty locational marginal prices (U-LMP) are designed
based on DR-CC OPF. Uncertainty sources are charged for
the additional reserve. However, it does not give locational
marginal prices for reserve. Chance constraints are adopted in
[32] to determine reserve capacities according to uncertainty
levels, and Lagrange multipliers are used to define locational
prices of variability, but revenue adequacy and uncertainty
correlation are not taken into account. A scenario-oriented
approach is proposed in [33] to jointly clear energy and
reserve and achieve marginal pricing of both. However, it can
be difficult to obtain the appropriate scenarios without prior
knowledge of the real distribution of uncertainty.

Our work further expands the marginal pricing scheme to
both sides of the flexibility market, thus revealing the true
values of flexibility and uncertainty. A DR-CC framework
is proposed to achieve locational marginal pricing of both
reserve and uncertainty using the DR-CC approach. We focus
on the economic implications and establish cost-causation
relationships between reserve and uncertainty, where the con-
gestion cost of reserve trading is explicitly incorporated into
the prices. Revenue adequacy and cost recovery are guaranteed
for all market entities, and the individual profit of each reserve
provider is maximized in a competitive environment.

Compared with RO approaches, the proposed DR-CC ap-
proach leverages information from historical data and is gener-
ally less conservative. Furthermore, the conservativeness level
can be easily controlled based on risk tolerance. It is also
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more tractable and computationally efficient. The tractability
is important given the growing number of distributed resources
with variable power outputs.

Major contributions of this paper are summarized below.
1 We propose a data-driven market clearing model with

uncertainty distribution information. Affine policy is em-
ployed in recourse actions. The model provides locational
marginal prices (LMPs) for both energy and reserve. We
show the price-quantity pairs maximize the profit for en-
ergy and reserve providers in a competitive environment.

2 We extend the concept of uncertainty marginal price
(UMP) to the case when uncertainty set is not avail-
able, and design a novel money flow scheme following
cost-causation principle. The congestion cost of reserve
trading is explicitly modelled, and is shown to guarantee
revenue adequacy.

3 We investigate impacts and incentives of the proposed
market mechanism via case studies, and test its feasi-
bility on a 1934-bus provincial system. The discussion
could provide insights for researches of uncertainty cost
allocation.

II. MARKET STRUCTURE AND THE OPTIMIZATION MODEL

This section describes the basic structure of the market, and
provides a DR-CC model for the co-optimization of energy
and reserve. The DR chance-constraints help guarantee a
predefined probability of constraint compliance, even when the
output probability distribution of variable generation is uncer-
tain. The model is recast to a second-order cone programming
(SOCP) problem.

Following current practice on pricing, it is assumed that
unit commitment solutions are given, and we only focus on
ED. The model is readily adjusted to incorporate UC by
introducing binary variables [20]. This will result in a mixed-
integer SOCP problem, which can be efficiently solved using
commercial solvers.

A. Market Organization

In the proposed market, transactions regarding energy, re-
serve, and uncertainty are carried out among market partic-
ipants. They are cleared simultaneously in a co-optimization
process that generates LMPs for energy and reserve and UMPs
for uncertainty. The entities being concerned in each kind of
transactions are summarized as below.

• Energy: Energy is traded from power producers to loads
on a nodal basis. The buyers include inelastic loads
represented by the ISO, elastic loads (independent or
organized via aggregators), and energy storage in the
charging mode. The sellers include dispatchable gen-
erators, renewable energy resources (RES), and energy
storage when discharging.

• Reserve: In order to curb uncertainty of power injec-
tions, the ISO procures reserve from flexible resources,
including dispatchable generators, demand response of
elastic loads, and energy storage. Reserves are cleared by
node to account for the impact of congestion on reserve
deliverability.

• Uncertainty: Under normal operating conditions, we de-
fine uncertainty as power deviations caused by imperfect
forecasts of inelastic load or renewable power. Uncer-
tainty sources are charged by the ISO for the reserve
procured to mitigate their uncertainty, including reserve
provision and transmission costs. Specifically, moment
information from historical data is used to quantify un-
certainty.

Transactions between reserve providers and uncertainty
sources are carried out centrally via the ISO. Each uncertainty
source pays for the deliverable reserve to balance its variabil-
ity. The reserve-uncertainty trading is analogous to the energy
trading in traditional markets, where energy buyers pay for the
energy cost that includes congestion costs.

B. Reserve Definition and Uncertainty Set

The classification and terminology of reserves vary greatly
for different markets. In this work, we mainly discuss the
regulation reserve, which enables generators to maintain real-
time power balance by automatically adjusting their outputs,
e.g. by following the automatic generation control (AGC)
signals. It should be quickly adjustable within a specified time
period, e.g. 10 minutes. Some ISOs also require regulation
providers to be able to maintain a prescribed output level for
a certain period of time (e.g. 1 hour) [34].

Although this paper focuses on reserves provided by gen-
erators, the proposed approach can also be adapted to apply
to other flexible resources, such as energy storage or elastic
loads, as will be demonstrated in case studies in Section V.

The renewable generation and load may deviate from the
forecasts. We formulate the deviations as below.

r̃i,t = ri,t +∆ri,t (1)

d̃i,t = di,t +∆di,t (2)

where r̃i,t and ri,t are the real and expected outputs of
renewable power source at bus i; d̃i,t and di,t are the real
and expected power demand at bus i; ∆ri and ∆di,t are
respectively deviations of renewable power and load.

It is assumed that the means µ and covariance matrix Γ
of the uncertainties are known from historical data, and the
uncertainty set is defined as the set of all possible probability
distributions with the same statistical properties:

Ξ =

{
Pξ

∣∣∣∣∣E(ξ) = µ

E(ξT ξ) = Γ

}
(3)

where ξ := {∆d,−∆r} is the uncertainty vector represent-
ing deviations from forecasts, with positive values indicating
unexpected increase of load (or decrease of generation).

The power deviations in the system are compensated for by
reserve providers according to balancing participation factors
in (4). An affine policy is used, where reserve providers
respond to different buses with different linear factors [6], [35].

∆gi = βT
i ξ (4)

where βi is the column vector of balancing participation
factors, with its kth element βi,k indicating the proportion of
uncertain deviation ξk that is balanced by gi;
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Similarly, the deviation of power on transmission lines are
approximated as linear functions in uncertainty ξ:

∆Pl = SFT
l (B

T −Dξ)ξ = xT
l ξ (5)

where ∆Pl is the deviation of power carried by line l; SFl

is the vector of load shift factors of Pl relative to injected
power at each bus; B := [β1, ... ,βi, ... ,βN ]

T is the matrix of
balancing factors; Dξ is the incidence matrix for uncertainty,
with Dξ(i, k) = 1 when uncertainty source k is at bus i;
xl := (B −DT

ξ )SFl is the sensitivity vector describing how
deviations ξ influence power flow change on line l.

C. DR-CC OPF

The co-optimization can be formulated as a DR-CC OPF
problem. The co-optimization objective is to minimize the total
cost for energy and reserves:∑

i,t

Ci,P (gi,t) +
∑
i

(
Cup

i,R (Rup
i ) + Cdn

i,R

(
Rdn

i

))
(6)

Ci,P , Cup
i,R and Cdn

i,R are cost functions for providing energy
gi,t, upward reserve Rup

i,t and downward reserve Rdn
i,t at bus i.

The functions are assumed to be quadratic or piecewise-linear.
The optimization is subject to the following constraints, with

the corresponding Lagrange multipliers given beside them.
• Power generation and ramping limits:

gi,t ≤ ui,t g
max
i −Rup

i (νupi,t ) (7)

gi,t ≥ ui,t g
min
i +Rdn

i (νdni,t ) (8)

(gi,t − gi,t−1) ≤ ui,tRUi ∆t (νRU
i,t ) (9)

(gi,t − gi,t−1) ≥ −ui,tRDi ∆t (νRD
i,t ) (10)

0 ≤ Rup
i ≤ui,tRUi ∆tR (νRU,0

R,i , νRU
R,i ) (11)

0 ≤ Rdn
i ≤ui,tRDi ∆tR (νRD,0

R,i , νRD
R,i ) (12)

where gi,t is the generator output of bus i, ui,t is the
UC decision solution, RUi and RDi are the upward and
downward ramp rates, ∆t and ∆tR are the time steps for
ED and reserve, respectively.

• Nodal and system-wide power balance constraints:

gi,t + ri,t − di,t = P inj
i,t (λi,t) (13)∑

i

P inj
i,t = 0 (λsys

t ) (14)

where di,t is the power demand, ri,t is renewable output,
and P inj

i,t is the net power injection at bus i.
• Transmission capacity limits:∑

i

SFl,iP
inj
i,t ≥ −Pmax

l + P dn
l,sec (νdnl,t ) (15)∑

i

SFl,iP
inj
i,t ≤ Pmax

l − P up
l,sec (νupl,t ) (16)

where SFl,i is the (l, i) element of shift factor matrix
SF calculated according to DC power flow equations,
and P up

l,sec, P dn
l,sec are upward and downward transmission

security margins reserved for uncertainty, respectively.

• Balancing factor constraints:∑
i

βi,k = 1 (λβ,k) (17)

This equation ensures that the fluctuation of each uncer-
tainty source is exactly balanced.

• Reserve and transmission security chance constraints:

inf
Pξ∈Ξ

Pξ{Rup
i ≥ βT

i ξ} ≥ 1− ϵi (18)

inf
Pξ∈Ξ

Pξ{Rdn
i ≥ −βT

i ξ} ≥ 1− ϵi (19)

inf
Pξ∈Ξ

Pξ{P up
l,sec ≥ xT

l ξ} ≥ 1− ϵl (20)

inf
Pξ∈Ξ

Pξ{P dn
l,sec ≥ −xT

l ξ} ≥ 1− ϵl (21)

where Pξ represents a probability distribution of the
uncertainty ξ, from the set of possible distributions Ξ.

The DR chance constraints in (18)-(21) ensure that activa-
tion of regulation reserves will respect generation or transmis-
sion limits with a probability of 1 − ϵ even under the worst
possible distribution of uncertain variables. ϵ is a small number
indicating the risk level. We assume that the violations of
different constraints are independent of each other, and adopt
a one-sided approximation [26]. A more rigorous formulation
will require the use of two-sided joint chance constraints [36].

D. Reformulations of the DR Chance Constraints

Chance constraint (18)-(19) and (20)-(21) are intractable.
As we have established linear relationships between uncertain
deviations ξ and system variables ∆gi, ∆Pl, statistical infor-
mation about ∆gi, ∆Pl can be derived based on uncertainty
set Ξ defined in (3). The chance constraint can then be recast
into the following second-order cone (SOC) forms [37]. The
SOC formulations are sufficient conditions of the original form
according to Chebyshev inequality.

Rup
i ≥ βT

i µ+ zi
∥∥Γ 1

2βi

∥∥
2

(ηupR,i) (22)

Rdn
i ≥ −βT

i µ+ zi
∥∥Γ 1

2βi

∥∥
2

(ηdnR,i) (23)

P up
l,sec ≥ xT

l µ+ zl
∥∥Γ 1

2xl

∥∥
2

(νupR,l) (24)

P dn
l,sec ≥ −xT

l µ+ zl
∥∥Γ 1

2xl

∥∥
2

(νdnR,l) (25)

Γ
1
2 is a matrix satisfying (Γ

1
2 )TΓ

1
2 = Γ, whose existence is

guaranteed by the positive semi-definiteness of Γ. Uncertainty
margin factors zi =

√
1−ϵi
ϵi

and zl =
√

1−ϵl
ϵl

are constants de-
termined by risk tolerance ϵ. Assuming that forecast deviations
follow symmetric, unimodal distributions, such factors can be
further relaxed as zi =

√
2
9ϵi

and zl =
√

2
9ϵl

[38].
Substituting (22)-(25) for (18)-(21), the original DR-CC

OPF is essentially reformulated into a SOCP problem (P1):

(P1)min
∑
i,t

Ci,P (gi,t) +
∑
i

[
Cup

i,R (Rup
i ) + Cdn

i,R

(
Rdn

i

) ]
s.t. generation constraints: (7)-(12)

balancing and transmission constraints: (13)-(17)
reformulated DR chance constraints: (22)-(25)
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Problem (P1) is efficiently solved by commercial solvers. Its
Lagrangian function is provided in Appendix A.

Finally, we note that (22)-(23) will result in identical reserve
requirements for both upward and downward reserves when
the uncertainty variables have zero means (µ = 0), as reserve
providers respond to deviations in both directions alike. This
is reasonable for regulation reserves, which compensate for
short-term power imbalances. However, if it is desired to
allow cleared amounts for upward and downward reserves to
differ, an asymmetric affine policy can be used [6], where
reserve providers respond to upward and downward uncertain
deviations asymmetrically. The formulations will be similar.
Here, we stick to the symmetric policy to simplify notations
and better illustrate the findings regarding pricing.

III. EFFICIENT LOCATIONAL MARGINAL PRICING

In this section, we derive LMPs for energy, reserves, and
uncertainty. Their compositions are also analyzed.

A. LMPs for Energy and Reserves

We define LMPs for energy, upward reserve, and downward
reserve as their respective shadow prices in (P1), in order to
reflect their marginal costs in system operation. They can be
obtained according to the following proposition:

Proposition 1: Let λi,t denote dual variable for (13), ηupR,i

denote dual variable for (22), and ηdnR,i denote dual variable
for (23) in problem (P1). The locational marginal price for
energy is λi,t, and the locational marginal prices for upward
and download reserves are ηupR,i and ηdnR,i, respectively.

The proof is trivial, and is omitted here.

B. Compositions of Energy and Reserve LMP

Based on the Lagrangian function of (P1) provided in
Appendix A, we establish propositions below.

Proposition 2: The locational marginal price for energy
consists of two components,

λi,t = λsys
t +

∑
l

SFl,i

(
νdnl,t − νupl,t

)
, (26)

where λsys
t is system energy cost, and

∑
l SFl,i

(
νdnl,t − νupl,t

)
is the congestion cost. λsys

t , νdnl,t , νupl,t are the Lagrange
multipliers of constraints (14)-(16), respectively.

Proposition 2 can be proven by taking the Lagrangian partial
derivative of P inj

i,t to zero.
Similar results can be obtained for for reserve LMPs. As

both upward and downward reserves are functions of the
balancing factor βi,k, their marginal prices are thus coupled.

Proposition 3: Locational marginal prices for reserves can
be represented as the marginal cost of compensating for un-
certainty k. Particularly, when the mean of uncertain deviation
k is zero (µk = 0),

ηupR,i + ηdnR,i =

∥∥Γ 1
2βi

∥∥
2

zi Γ
T
k βi

(
λβ,k −

∑
l

SFl,iν
con
l,k

)
, (27)

where λβ,k is the system flexibility cost for uncertainty k, and∑
l SFl,iν

con
l,k is the reserve congestion cost. νconl,k is defined as

νconl,k := µk

(
νupR,l − νdnR,l

)
+

zl Γ
T
k xl∥∥Γ 1

2xl

∥∥
2

(
νupR,l + νdnR,l

)
, (28)

where λβ,k, νupR,l, νdnR,l are the Lagrangian multipliers of
constraints (17) and (20)-(21), respectively.

The proof of Proposition 3 can be found in Appendix B.
Equation (27) assumes µk = 0 for simplicity. When µk ̸= 0,
the left side of the equation will become a different linear
combination of ηupR,i and ηdnR,i.

C. Uncertainty Marginal Prices (UMP)
We now derive marginal prices for uncertainty, which is

represented by means (µ) and standard deviations (σ) of
forecast errors for variable generation. We employ the concept
of shadow price in duality theory. Uncertainty prices provide
incentives for variable power to mitigate their own uncertainty.

As standard deviations σ are implicitly represented by the
covariance matrix Γ, we first rewrite Γ as

Γ = (σσT )⊙P (29)

where P := {ρi,j} is the matrix of Pearson correlation coeffi-
cients, and ⊙ is the operator for element-wise multiplication.

The UMPs are then defined as partial derivatives of the
Lagrangian function:

λµ,k :=
∂L
∂µk

=
∑
i

(
ηupR,i − ηdnR,i

)
βi,k +

∑
l

(
νupR,l − νdnR,l

)
xl,k

(30)

λσ,k :=
∂L
∂σk

=
∑
i

(
ηupR,i + ηdnR,i

)zi ∑j ρk,jβi,kβi,jσj∥∥Γ 1
2βi

∥∥
2

+
∑
l

(
νupR,l + νdnR,l

)zl ∑j ρk,jxl,jxl,kσj∥∥Γ 1
2xl

∥∥
2

(31)

where λµ,k and λσ,k are the marginal prices for µk and
σk, respectively. xl,k represents the kth elements in xl. It is
observed that both λµ,k and λσ,k have two components. The
first component represents marginal reserve cost for uncer-
tainty source k. The second component stands for transmission
reserve cost for uncertain power flow.

Although (30) defines marginal price λµ,k for the mean µk

of forecast errors, µk can be reduced to zero by adjusting the
setpoint of variable power to the expected values in practice.
Therefore, we are more concerned with the marginal price λσ,k

for standard deviation σk.
As a side note, (30)-(31) can also give UMPs for buses with-

out uncertainty. In this case, the UMPs are only determined
by the correlation ρ for existing uncertainty sources. They can
provide price signals for the investment of variable generation.

IV. MARKET IMPLICATION AND INCENTIVES

In this section we discuss the relationship between reserve
and uncertainty payments, and analyze the reserve congestion
costs. The marginal prices are shown to follow the cost-
causation principle and provide appropriate incentives for
efficient operation and investment. Possible problems in im-
plementation are also discussed.
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A. Money Flow Analysis and Reserve Congestion

In the proposed market clearing framework, uncertainty
sources pay for the cost of reserves that are used to mitigate
their uncertainties.

Based on the LMP definitions, the revenue ER,i for reserve
provider at bus i is calculated as

ER,i := ηupR,iR
up
i + ηdnR,iR

dn
i

=
∑
k

βi,k

(
λβ,k −

∑
l

SFl,iν
con
l,k

)
=
∑
k

ER,i,k. (32)

Similarly, the uncertainty payment Cξ,k by uncertainty source
k is calculated as

Cξ,k := λµ,kµk + λσ,kσk

=
∑
i

βi,k

(
λβ,k −

∑
l

SFl,ikν
con
l,k

)
=
∑
i

Cξ,i,k. (33)

The detailed proof of (32)-(33) can be found in Appendix C.
Equation (32) shows that the reserve payment for bus i can

be written as the sum of ER,i,k, which represents the part
of revenue received by i for mitigating the uncertainty of k.
Equation (33) shows that the uncertainty payment by k can be
written as the sum of Cξ,i,k, which stands for the payment by
k for the part of uncertainty mitigated by i.

Comparing (32) and (33), uncertainty payment Cξ,i,k can
be interpreted as the reserve payment ER,i,k plus reserve
congestion costs on all lines from i to k, i.e.

Cξ,i,k = ER,i,k +
∑
l

F con
l,i,k (34)

F con
l,i,k := βi,k(SFl,i − SFl,ik)ν

con
l,k , (35)

where νconl,k is as defined in (28), and F con
l,i,k represents the

reserve congestion cost on line l for mitigating uncertainty k
from i. Similar to the traditional congestion cost in energy
trading, reserve congestion cost F con

l,i,k may take both positive
and negative values, as reserve trading can both exacerbate
and alleviate congestion depending on the route of transmis-
sion. The total reserve congestion rent always satisfies that∑

l,i,k F
con
l,i,k ≥ 0, as shown in Appendix D. The implications

of the reserve congestion rent will be further explored in the
next subsection.

Specifically, when the reserve provider and the uncertainty
source are located at the same bus (ik = i), or when there is
no congestion (νconl,k = 0), congestion cost

∑
l F

con
l,i,k is reduced

to zero, thus

ER,i,k = Cξ,i,k = βi,kCξ,k, (36)

which means the reserve revenue is exactly equal to the
uncertainty payment. This is fundamentally important for un-
certainty mitigation, as it treats uncertainty and reserve equiv-
alently. It gives the market viability for uncertainty sources
to mitigate their uncertainty by themselves in operation or
investing in flexible resources.

B. Revenue Adequacy and FTR Underfunding

In the energy market, energy prices at generator buses are
often lower than those at load buses. The resulting net profit
is sometimes called congestion rent, which in many power
markets is then redistributed to financial transmission right
(FTR) holders based on LMP differences [39], [40]. FTR is a
tool to hedge against congestion risks, and also helps provide
incentives for optimal transmission expansion [41].

Similarly, the trade of reserve and uncertainty also generates
a reserve congestion rent, i.e. the total reserve congestion cost∑

l,i,k F
con
l,i,k. The activation of reserve for balancing uncer-

tainty requires additional security margins for transmission, as
shown in (15)-(16), causing a decrease of energy congestion
rent and underfunding of FTR [5]. To resolve this issue, we
have the following proposition:

Proposition 4: The total uncertainty payment
∑

Cξ,k ex-
actly covers the total reserve payment

∑
ER,i and maximum

FTR underfunding. In other words, the total congestion rent∑
l,i,k F

con
l,i,k exactly covers the maximum FTR underfunding.

The proof is provided in Appendix D. Proposition 4 essen-
tially shows that FTR payments are covered by both energy
and reserve congestion rents together. Therefore, the proposed
pricing scheme effectively guarantees revenue adequacy.

C. Profit Maximization and Competitive Equilibrium

In order to examine the stability of the market clearing
results, in this section we prove that each flexible resource can
maximize their individual profits under the specified market
conditions. For simplicity, it is assumed that the market is
fully competitive and all participants are price takers.

Based on KKT conditions, the energy LMPs for generator
buses can be represented as (37):

λi,t =
dCi,P (gi,t)

dgi,t
+ νupi,t − νdni,t + νRU

i,t − νRD
i,t

+ νRU
i,t+1 − νRD

i,t+1 (37)

which includes terms for marginal generation costs, output
limits νupi,t , νdni,t , and ramping limits νRU

i,t , νRD
i,t , νRU

i,t+1, νRD
i,t+1.

Similarly, reserve LMPs can also be analyzed as marginal
costs according to KKT conditions, as shown in (38)-(39).

ηupR,i =
dCup

i,R(R
up
i,t )

dRup
i

+
∑
t

νupi,t + νRU
R,i − νRU,0

R,i (38)

ηdnR,i =
dCdn

i,R(R
dn
i,t )

dRdn
i

+
∑
t

νdni,t + νRD
R,i − νRD,0

R,i (39)

with components for marginal reserve cost, output limits νupi,t ,
νdni,t , and ramping limits νRU

R,i , νRU,0
R,i , νRD

R,i , νRD,0
R,i . Generators

are incentivized to adjust their reserve provision until marginal
costs are equal to local reserve price, unless constrained by
generation limits.
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Consider generator at bus i. Given clearing prices λi,t, η
up
R,i,

and ηdnR,i, its profit maximization problem (P2) is:

(P2) max
(gi,t,Rup

i ,Rdn
i )

∑
t

λi,tgi,t + ηupR,iR
up
i + ηdnR,iR

dn
i

−
∑
t

Ci,P (gi,t)− Cup
i,R (Rup

i )− Cdn
i,R

(
Rdn

i

)
s.t. (7) − (12)

With a convex objective function and linear constraints, the
above problem is convex, and its optimal solution is attained
when the KKT conditions are met. In fact, because λi,t, η

up
R,i

and ηdnR,i are defined as shadow prices, the KKT conditions of
the generator profit maximization problem are exactly reflected
by price properties (37)-(39). Thus, the market clearing results
also constitute an optimal solution to the participant’s profit
maximization problem.

It is important to note that the above conclusion is dependent
on the affine policy employed in reserve activation. In other
words, we assume that reserve providers react to system power
imbalances automatically in proportion to linear participation
factors. This is a practical assumption, as regulation reserve
employs similar strategies in AGC systems [42]. Indeed, when
reserve deployment does follow the affine policy, the market
clearing results actually form a competitive partial equilibrium
[43], where no participant participant has incentive to deviate
from the dispatch.

It is noted the competitive equilibrium is based on the
assumption that all participants are price takers. In practice,
market power is a legitimate concern. Reserve providers may
deliberately bid higher than their true costs, in order to raise
prices and earn more profits. The actual equilibrium reached
will push total system costs higher than the optimal solution.

Although real-world markets are often not fully competi-
tive, the result presented in this subsection is still important.
It essentially proves that, with enough competition, market
equilibrium will coincide with the system optimal operating
point. This guarantees practicality under a baseline situation,
and offers system operators a viable option to improve market
efficiency. As will be shown in the case study, the impact
of market power is limited when the system has sufficient
flexible resources available. When flexibility is scarce, the
large flexible resource owners will have relatively high market
power. It in fact may provide incentive investment for flexible
resources, and in turn alleviates the impact of market power.
Other measures limiting market power include broader market
participation, and better market oversight and regulations.

D. Data Driven Strategy and Market Fairness

The uncertainty set defined in the proposed market clearing
scheme does not have clear-cut boundaries. Rather, it is only
based on statistical properties, i.e., means and covariances
of forecast errors. In other words, the proposed method is
a data-driven one. The market clearing results rely heavily
on uncertainty set Ξ and risk tolerance level ϵ. The Ξ is
obtained from historical data, and can be updated with new
observations. Meanwhile, ϵ has an explicit meaning, and can
be chosen according to reliability requirements. Therefore, the

G1 G3

G2

W2 BES

1

2

3

4 5 6

78
9

W1

congestion

Fig. 1. Modified IEEE 9-bus Power System

pricing results generated in this way have better explanatory
power, reducing the arbitrariness of traditional methods.

To ensure fairness and efficiency, it is ISO’s responsibility to
maintain a dataset of uncertainty sources, including expected
forecast errors, their variances and correlation. It should also
be regularly updated. ISOs record the reported forecasts and
realizations of variable generation. These records can then be
used to reassess the uncertainty levels periodically, e.g. once
per year. This provides incentives for uncertainty sources to
improve forecasting technology and reduce uncertainty.

Another factor directly affecting market clearing results is
distributionally robustness. Within the proposed method, it is
possible to achieve robustness for all possible distributions
of forecast error. The conservativeness of the results can be
further reduced when additional information about the real
distribution is available. For example, from empirical results
in [44], [45], it can be observed that wind power forecast errors
largely follow symmetrical unimodal distributions. Thus, the
uncertainty margin factors can be set smaller values according
to [38]. In the meantime, the ISO could update their reserve
requirements as more data is accumulated in operation.

V. CASE STUDY

The proposed scheme is tested in 3 case studies. A modified
IEEE 9-bus system is used to present the basic market clearing
results and implications, including a comparison with scenario-
based and robust approaches. Then, unit commitment is con-
sidered in the IEEE 30-bus system to explore the stability of
pricing and the impact of demand response. Finally, feasibility
of the proposed market clearing scheme is justified on a testbed
based on a 1934-bus provincial system in China.

A. Modified IEEE Nine-Bus System

1) Test Case Description: The proposed scheme is im-
plemented in a modified IEEE 9-bus system, with three
generators, two wind farms, and a total peak load of 700 MW.

To investigate the impact on flexible resources, a battery en-
ergy storage (BES) system (30 MW/100 MWh) is added. For
simplicity, charging/discharging efficiency of the BES system
is assumed to be 100%. As continuation time of regulation
reserve is very short, the impact of reserve activation on the
BES state of charge (SOC) is not taken into account. The one-
line diagram of the system is shown in Fig. 1. The parameters
of flexible resources are listed in Table I and II.
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TABLE I
PARAMETERS OF GENERATORS

# Bus Pmax Pmin RU RD a2 a1 a0

G1 1 250 50 125 125 0.1100 5.0 150
G2 2 300 60 150 150 0.0850 1.2 600
G3 3 270 54 135 135 0.1225 1.0 335

Pmax, Pmin: maximum/minimum power output (MW)
RU, RD: up/down ramp rate (MW/h)
generation cost: a2P2+a1P+a0 ($)

TABLE II
PARAMETERS OF THE BES

# Bus Pmax Pmin Emax Emin b1 b0

BES 9 30 -30 100 10 0.1 0

Pmax, Pmin: maximum power output/input (MW)
Emax, Emin: maximum/minimum energy storage (MWh)
charging/discharging cost: b1|P|+b0 ($)

Major uncertainty sources are the two wind farms with total
capacity of 270 MW. The standard deviation of forecast error
is set at 5% of the average output. Forecast error of non-
dispatchable load is neglected. All deviations are assumed to
be averaged 0. The confidence levels are set to 99.75% for
reserve adequacy, and 99% for transmission security chance
constraints. Furthermore, in order to analyze the impact of
network congestion, the capacity of line 7-8 is deliberately
reduced to 100 MW. It could be the case when the line is
under maintenance and needs to operate below the designed
capacity.

2) Market Clearing Results: Fig. 2 shows the market clear-
ing results of energy, upward reserve, and downward reserve
for generator and BES buses in 24 hours. According to Fig. 2,
energy prices at selected buses are the same from hour 0
to 9, but diverge greatly from hour 10 to 22. It indicates
congestion of line 7-8 occurs from hour 10 to 22. Reserve
prices largely show the same patterns. It is noted that marginal
reserve prices at BES bus varies violently. Another interesting
observation is that upward and downward reserve prices at
the BES bus show opposite trends. For example, in hour 7,
the upward reserve price reaches its valley $5.0/MW while
downward reserve price attains its peak $7.7/MW. This is
because the costs for BES reserve provision are dependent
on its current charging/discharging status. As the network is
congested, reserve demanded at bus 9 is largely provided by
the BES, which is also located bus 9. Therefore, the reserve
prices at bus 9 are largely set by BES marginal costs as well.
In the meantime, it also indicates that the proposed pricing
mechanism is able to reflect the true value of the flexible
resources, even when congestion occurs.

By analyzing the cleared price/quantity pairs, several inter-
esting results are observed for this case. First, BES accounts
for almost 1/3 of total cleared reserves, although its installed
capacity is less than 5% of total generation capacity. BES
tends to be used as a reserve provider due to its flexibility.
Second, prices for upward reserves (averaged $6.3/MW) are
slightly higher than those for downward reserves (averaged
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Fig. 2. Market clearing results

$6.0/MW). One of the reasons is that upward reserves of-
ten incur higher energy costs. Third, reserve prices, ranging
$4.5-8.3/MW, are much lower than energy prices, which are
between $24.2/MWh to $42.7/MWh.

Fig. 3 shows UMP values (for standard deviation σ) with
and without BES in different colors. The color bar shows the
price range for both cases. Without BES, the highest UMP
$185/MW is attained in hour 17 at bus 7. Bus 8 has the lowest
UMP $97/MW at hour 16. By introducing BES, the UMPs
are reduced in general. For example, the UMP in hour 17
is decreased by $32/MW ($28/MW=$185-153/MW) at bus 7.
It indicates that adding less-expensive flexible resources can
effectively lower the reserve prices. In both cases, UMPs for
the wind farm buses (7 and 9) are the highest. UMPs at bus
2 and 8 are the cheapest, as G2 has the capability to provide
reserves to them. However, due to the congestion of line 7-8,
G2’s less-expensive reserve cannot be delivered to bus 7. That
results in high UMP at bus 7. The UMPs at bus 7 and 8 are
close in the morning and midnight, but diverges significantly
in the afternoon. That is because more flexible resources have
to be called for mitigating the uncertainty in the afternoon.

3) Revenue Adequacy and Economical Analysis: To exam-
ine economical implications of the DR-CC marginal pricing
scheme for flexible resources, cost-revenue analysis for market
participants is carried out before and after the integration of
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Fig. 3. UMPs (for σ) without and with BES integration

TABLE III
REVENUES AND COSTS OF MARKET PARTICIPANTS WITHOUT BES

CONNECTION (×103 $)

Energy Reserve UMP
payment

Net
profit

credit cost credit cost

G1 91.30 -56.41 8.17 -4.53 0 38.33
G2 121.15 -77.39 10.27 -5.69 0 48.25
G3 105.96 -62.58 8.06 -4.41 0 46.82
W1 45.76 0 0 0 -10.17 35.59
W2 72.50 0 0 0 -16.87 55.63
Load -446.29 0 0 0 0 -446.29

ISO 9.62 -26.50 27.04 10.16

FTR credit: $10,160

BES. The results are shown in Table III and Table IV.
Comparing Table III and IV, we see that the integration

of BES reduces profits for generators by about 2.8%-6.2%,
but raises profits for renewables by 7.4%-7.5%. The cheaper
flexibility from BES means reserves can be procured at a
lower cost. On one hand, it reduces uncertainty payments
by renewables. On the other hand, other generators lose part
of the reserve revenue. As the BES is mostly dispatched for

TABLE IV
REVENUES AND COSTS OF MARKET PARTICIPANTS FOR BES-CONNECTED

CASE (×103 $)

Energy Reserve UMP
payment

Net
profit

credit cost credit cost

G1 91.09 -56.31 4.27 -2.44 0 36.46
G2 119.83 -76.72 5.23 -3.00 0 45.27
G3 106.70 -62.96 4.45 -2.51 0 45.54
BES 0.40 -0.02 5.75 -3.40 0 2.72
W1 46.08 0 0 0 -7.86 38.22
W2 72.34 0 0 0 -12.51 59.83
Load -446.77 0 0 0 0 -446.77

ISO 10.34 -19.70 20.36 11.00

FTR credit: $11,000
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Fig. 5. Monte Carlo sampling of transmission power on Line 7-8 under
Student’s t distribution (ν = 3)

reserve provision instead of peak shaving, most of its profit
($2,720) comes from reserve payments instead of arbitrage,
which accounts for only $380. Both cases also validate revenue
adequacy, as net profits for the ISO exactly cover the FTR
credits ($10,160 in Table III and $11,000 in Table IV).

4) Comparison with Stochastic and Robust Approaches: In
order to justify the use of the DR-CC approach, the proposed
method are compared with the traditional scenario-based and
robust optimization approaches. More specifically, three test
cases are performed, each with a different approach to system
generation and transmission constraints.

• Stochastic case, where the constraints are satisfied for a
selected sample of stochastic scenarios.

• Robust case, where the constraints are guaranteed under
the worst possible realization of uncertain deviations. The
robust model used is as described in [35].

• DR-CC case, where the constraints are only violated
with a sufficiently low probability, even under the worst
possible distribution of uncertain deviations.

TABLE V
TOTAL OPERATION COST UNDER DIFFERENT APPROACHES (×103 $)

Stochastic Case Robust Case DR-CC Case

Total Cost 207.47 212.21 207.70
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Fig. 6. Market clearing results with strategic bidding of BES
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Fig. 7. Market clearing results with strategic bidding of G1

The robustness of the three approaches are tested us-
ing Monte Carlo simulation with 1000 randomly generated
samples. Particularly, power flow simulation results on the
congested line (Line 7-8) are illustrated in Fig. 4 and Fig. 5.
Power deviations of uncertainty sources are sampled according
to Gaussian distribution in Fig. 4 and Student’s t distribution
(with ν = 3) in Fig. 5. In both cases, the sampled uncertain
deviations have the same means and standard deviations.

The advantages of the DR-CC approach can be observed
by comparing the Monte Carlo simulation results with total
costs of the three cases as listed in Table V. The stochastic
case has the lowest cost, and can also ensure security under
the Gaussian distribution, with zero violation of transmission
constraints in 1000 scenarios. However, the violation rate
rises to 0.6% when uncertainty takes Student’s t distribution,
which has a longer ”tail” and varies to a greater range.
On the other hand, the robust case guarantees compliance
of the transmission capacity constraint, by reserving a large
security margin and reducing fluctuation of the power flow.
In the meantime, system costs rise by $4,740 compared to
the stochastic case. In contrast, the DR-CC case shows a low
constraint violation rate of 0.1% in Fig. 5, while the total costs
are raised by only $230 compared with the stochastic case.
In practice, the rare instances of transmission limit violation
under the DR-CC case can also be avoided with additional
intervention of the system operator. This makes the DR-CC
approach a good compromise between security and economic
efficiency.

5) Impact of Market Power: In this subsection, we investi-
gate the impact of market power, i.e. price-maker model, and
illustrate how prices are influenced by the strategic bidding of

big players. Specifically, Fig. 6 and Fig. 7 present the market
simulation results where the reserve cost bids of BES and
G1, respectively, are adjusted while all other participants bid
honestly. The results are presented as percentages of values
under the reference case, i.e. when all participants bid their
true costs.

In both cases, reserve prices and system costs increase
linearly as the strategic participant bids higher. The profit of
the strategic bidder first increases to a peak value, but then
starts to decline as less amount of reserve is provided by it.

As big players, BES and G1 each provide as much as
20-30% of reserves under the reference case (see Fig. 2).
However, as shown in Fig. 6 and Fig. 7, their influence on
total system costs are limited. When either of them raises
reserve bids to optimize their own profits, system costs are
only increased by 0.59% and 0.35%, respectively.

Although G1 has a much higher power generation capacity,
BES is more flexible. Therefore, the BES can better increase
its profit in the reserve market by bidding strategically, and
have a higher impact on system costs. For example, at the
optimal bidding point, BES can make as much as 7.5%
additional profit, while a less flexible resource like G1 can
only increase its own profit by 0.25%.

In summary, market power does have an impact on the
market outcome. However, the impact is limited when there are
alternative flexible resources available. As discussed in Section
IV, this can be achieved with broader market participation, or
better regulation. Moreover, allowing more flexible resources
to make more profit can also encourage investment when there
is a lack of flexible capacity in the early stages of the market.

B. IEEE 30-Bus System

1) Case Description: In this part, simulations are conducted
with a modified IEEE 30-Bus system. The purpose is to
examine the stability and robustness of the proposed market
clearing mechanism, especially when UC is taken into account.
The test system has three wind power stations with a combined
capacity of 90 MW, and a total peak load of 425 MW, of which
5% is elastic load that can participate in the reserve market
with demand response.

2) Sensitivity Analysis: A series of SCUC and SCED opti-
mization problems are solved while the total reserve capacity
demand is increased from 0 to over 90 MW, which can be
achieved by gradually increasing system uncertainty level,
or by equivalently lowering risk tolerance. The test result is
illustrated in Fig. 8, showing the amount of reserves provided
by each generator, and the reserve prices at their buses. The
impact of elastic load participation is examined by comparing
results with and without demand response of elastic loads.

According to Fig. 8, under both cases, as the total reserve
requirement is raised, the cleared quantities and prices for
each flexible resource increase accordingly in a piecewise-
linear pattern. The turning points occur when more expensive
reserves are required or a new unit is committed. For example,
in Fig. 8 (c), when the upward reserve requirement is set to
17 MW, the turning point shows an increase in gradient of the
reserve price curve. It indicates that G1 and G2, which are
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Fig. 8. Reserve clearing results with increasing total demand

more expensive than G4, have become the marginal generators
to set the reserve price. On the other hand, when the upward
reserve reserve requirement is set to 55 MW, G5 is committed.
In this case, the reserve marginal prices fall down abruptly.
That is because the newly committed G5 can provide much
cheaper reserves.

Fig. 8 (a), (c), (b), and (d) reveal the contribution of elastic
loads. Although only accounting for 5% of the total load,
elastic loads provided almost 15% of total reserve at the peak.
They can also reduce total system cost by lowering reserve
prices and avoid or postpone the introduction of new units. For
example, in Fig. 8 (c), without elastic load participation, G3 is
committed when total reserve requirement reaches 69.4 MW,
and the upward reserve price for G1 is $16.7/MW. In contrast,
Fig. 8 (d) shows that elastic loads defer G3 commitment until
reserve requirement reaches 77.4 MW, and G1 upward reserve
price drops to $14.8/MW, This shows the value of demand-
side flexibility even if only a small proportion of loads are
dispatchable.

C. Shaanxi 1934-Bus System

1) Case Description: We test the proposed approach using
the data from a Shaanxi system, with 1934 buses and 2415
branches. The system has a peak load of 35.3 GW, installed
conventional generator capacity of 37.3 GW, and installed
renewable capacity of 20.9 GW. The renewables are mainly
located in the north, and line congestion occurs when the
power is delivered to load centers in the south. The system
is divided to 12 zones, and we assume generators respond to
aggregated uncertainty within a zone.

2) Market Clearing Results: Fig. 9 shows the market
clearing results for several zones. In Fig. 9a and 9b, color
bars stand for the average reserve and energy prices, with top
line marking the maximum price and bottom line marking the
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Fig. 9. Market clearing results for selected zones

minimum price in a zone. It is observed that reserve and energy
prices show opposite patterns. For example, Zone 2 has the
lowest average reserve price, $4.2/MW. In contrast, Zone 2 has
the highest average price for energy, $39.2/MWh. Meanwhile,
Zone 6 has the highest average reserve price, $6.4/MW, and
the lowest average energy prices, $35.4/MWh).

Fig. 9c and 9d shows the cleared quantities for reserve and
energy, respectively. Zone 6 has the most cleared renewables
while Zone 2 has more conventional generators. With the price
and quantity results, it is safe to draw the conclusion that the
renewable can reduce the energy cost, but also increase the
reserve price, as it demands for more flexibility.

On the other hand, we observe that Zone 5 and 6 have
large differences between the minimum and maximum prices.
For example, the maximum upward reserve price is around
$6.8/MW, and the lowest one is around $4.6/MW in Zone 5.
It indicates the line congestion occurs within Zone 5 and 6.

VI. CONCLUSION

This paper proposes a market clearing model, and defines
locational marginal prices for energy, regulation reserve, and
uncertainty. The market clearing model leverages the historical
data, and employs distributionally robust chance constraints
to guarantee reserve deliverability under uncertainty. The pro-
posed prices explicitly describe marginal values of flexibility
and uncertainty, including the congestion cost of reserve
transmission. Money flow analysis shows that uncertainty
and flexibility are treated equivalently. Fair incentives are
provided to both flexible resources and uncertainty sources for
their optimal operation and investment. Uncertainty sources
are encouraged to curb their variability, e.g. by improving
forecast techniques, or investing in flexibility. System revenue
adequacy is also guaranteed.

Possible future research topics can include equilibrium anal-
ysis in a not fully competitive environment, and market designs
that allow broader participation of novel flexible resources
from the demand side. A more inclusive electricity market
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can help mitigate the impact of increasing uncertainty in the
system, and facilitate the transformation of the power system
for a greener future.

APPENDIX A
LAGRANGIAN FUNCTION FOR PROBLEM (P1)
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APPENDIX B

PROOF OF PROPOSITION 3

With the Lagrangian function of (P1) defined in Ap-
pendix A, the reserve LMPs can be calculated by taking the
partial derivatives of βi,k to zero.

∂L
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The above equation can be rearranged to get(
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where νconl,k is as defined in (28).
When µk = 0, (41) is simplified to (27). Thus, Proposition 3

is proven.

APPENDIX C
DERIVATION OF RESERVE AND UNCERTAINTY PAYMENTS

We first derive the reserve payment (32). By taking partial
derivative for βi,k of the Lagrangian function, we have
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Combining results from (42)-(44), we can calculate the total
reserve payment for bus i as
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which is exactly the result in (32).
Next, we derive the uncertainty payment (33). With UMPs

λµ,k and λσ,k defined as in (30)-(31), uncertainty payment for
k can be directly calculated as
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where the third equality is from the definition of νconl,k in (28),
and the fourth equality is from (42) and constraint (17). Thus,
uncertainty payment (33) is obtained.

APPENDIX D
PROOF OF PROPOSITION 4

We first calculate the difference between total uncertainty
payment and total reserve payment, i.e. the total reserve
congestion cost. From (32)-(34) and the definition of xl in
(5), we have∑
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where νcon
l is the vector of reserve congestion costs νconl,k .

The total reserve congestion rent on the right side of (47)
is always non-negative. To see this, first calculate it as∑
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Due to complementary slackness, we have
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According to KKT conditions, the partial derivatives of the
Lagrangian L to P up
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i.e. the reserve congestion rent is always non-negative.
On the other hand, the payment to FTR holders is the prod-

uct of FTRi→j quantities and price differences between i and
j. With the extra transmission security margins, FTR payments
may exceed the total congestion revenue. (54) defines the total
FTR underfunding and calculates its upper limit.∑

t

∑
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The first inequality holds due to the FTR simultaneously
feasible condition [8]

−Pmax
l ≤

∑
i→j

(SFl,j − SFl,i) FTRi→j ≤ Pmax
l , (55)

and the second inequality is guaranteed by transmission ca-
pacity limits (15)-(16).

Thus, the maximum FTR underfunding (54) is equal to the
total reserve congestion cost (53), which is exactly the surplus
of uncertainty payments (47). In other words, revenue ade-
quacy of the proposed market clearing scheme is guaranteed.
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