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Abstract—This paper presents a robust bi-level optimization
model with near-optimal solution in lower-level to manage the
electric vehicle (EV) load. The diversity of human preferences
gives rise to uncertain human-choices when multiple options
share the same charging cost. This uncertainty contributes to
markedly distinct load profiles, resulting in severe ramping
events, congestion, and voltage issues. To address it, this paper
proposes a Location-Time-of-Use (LToU) charging price-based
EV demand management approach that aims to flatten the net
load curve in the face of uncertainties related to human choices.
It is important to note that EV owners may have multiple
near-optimal solutions to choose from, resulting in different
demand response profiles. Therefore, it is essential to model EV
owner’s choice uncertainties, so that LToU rate can be correctly
set. Addressing lower-level solution uncertainty in optimization
models remains an open question in the literature. This work
aims to bridge the gap with the proposed model. By exploring the
model structure, we propose a group of optimality conditions and
an algorithm to solve the problem. We perform comprehensive
simulations with a power-transportation system. The results show
the proposed approach can help flatten the load curve under
human-choice uncertainty.

Index Terms—Pricing, Uncertainty, Demand Management,
Electric Vehicle

NOMENCLATURE

Functions
Cn,k,t(π) Charging cost in function of charging rate
f(P ) Objective in function of power generation
P load
i,t (π) Real demand in function of charging rate

Qload
i,t (π) Reactive load in function of charging rate

Indices
(i, j)/i, j/t Index of branch/node in PDN/time slot
g/k/n/r Index of generator/FCS/EV/PV
l Index of segment of piecewise function
s Index of discrete charging price segment
Parameters
α/β/γ Cost weight of charging rate, distance and

plug-in time discomfort degree
π̄k/π̄t Mean charging rate at FCS k/time slot t
δn Acceptable cost increment for customer n
ηn,t Plug-in time discomfort degree of EV n

charging at time slot t
π̂k,t,s Price map representing the sth price choice

of FCS k at time slot t
πk,min/πk,max Minimum/maximum charging rate at FCS k
θ̃ij,t Phase difference between node i and j at time

t attained from last iteration
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ṽi,t Voltage magnitude of node i at time t at-
tained from last iteration

bij/gij Susceptance/conductance of branch (i, j)
En Energy demand of EV n
Pn Charging power of EV n
P gen
g,min/P

gen
g,max Real power bounds of generator g

psegl,g Length of segment l
Qgen

g,min/Q
gen
g,max Reactive power bounds of generator g

T tr
n,t Travelling time of EV n to FCS k

vi,min/vi,max Voltage magnitude bounds at node i
Sets
B/N/T Set of all branches//nodes in PDN/time slots
B(i)/K(i) Set of branches/FCSs connected to node i
E/G/K/R Set of EVs/generators/FCSs/PVs
G(i)/R(i) Set of generators/PVs connected to node i
S Set of discrete charging price segments
Variables
µn,k,t Dual variable of constraint (29)
πk,t Charging rate of FCS k at time t
θij,t Voltage phase difference between node i and

j at time t
φn,k,t Auxiliary variable for bi-linear component

µn,k,tπk,t

In,k,t EV charging selection indicator, 1 for se-
lected and 0 otherwise

P gen
g,t /Qgen

g,,t Real/Reactive power generation of generator
g at time t

P cs
i,t EV charging load of node i at time slot t

P load
i,t /Qload

i,t Real/Reactive power demand of node i at
time t

P line
ij,t /Qline

ij,s,t Real/Reactive power flow of branch (i, j) at
time t

Uk,t,s Charging price choice indicator, 1 for select-
ing sth price segment and 0 otherwise

vi,t Voltage magnitude of node i at time t

I. INTRODUCTION

GREENHOUSE gas emissions have received significant
attention in recent years. As the two largest contribu-

tors, the transportation and power sectors are accountable for
37.7% and 27.5% of the U.S.’s fossil fuel in 2022 [1]. These
two sectors account for over 65% of global primary energy
consumption worldwide. As a countermeasure, transportation
electrification has been recognized as a potential solution given
its ecologically friendly and cost-efficient advantages.

In the transportation sector, EVs as the substitute of internal
combustion engine (ICE) vehicles have seen great devel-



opment. Following a decade of rapid growth, the sales of
EVs exceeds 10 million in 2022 [2]. 230 million EVs are
projected to hit the load by 2030 in the supportive policy of
net zero-emission scenario [2]. Meanwhile, the ever-increasing
adoption of EVs has a strong demand for advanced battery
technology and smart charging infrastructure networks. To
meet this demand, public charging stations, equipped with
charging piles that connect EVs to the power grid, have been
rapidly deployed. At the end of 2022, publicly accessible
charging points have reached 1.76 million in China, with fast
chargers accounting for 43.2% of the total [2]. This extensive
charging infrastructure serves as a vital link between the power
and transportation systems. Large-scale fast-charging stations
(FCSs) could easily create a peak load in power systems,
posing challenges to system stability. As the integration of
EVs accelerates, uncoordinated simultaneous connection and
charging may lead to elevated peaks, causing various adverse
effects on power distribution networks (PDNs).

Charging rate, distance, and plug-in time are main con-
cerns for EV owners when making charging choices [3].
Generally, EV owners exhibit rational behavior by selecting
the nearest FCS with a lower charging rate to align with
their preferences [4]. The uncontrolled individual behavior
may cause congestion in both FCS and PDN [5]. Notably,
congestion in the coupled systems is interdependent, mean-
ing that congestion in PDN can influence the charging rate
adjustment in FCS. Price-sensitive customers may opt for
different FCSs, thereby mitigating the burden on PDN caused
by charging loads [6]. Moreover, it can aid in the redistribution
of traffic within transportation networks [7]. Furthermore,
EVs are well-known partially flexible loads in the demand
response program [8], which is also a kind of spatial-temporal
shiftable battery storage. It is essential to study the spatial-
temporal scheduling of EVs in load management. A real-time
smart EV charging scheme based on the data metering is
proposed in [9], generating control signals for peak shaving
in commercial and industrial districts. At the apartment level,
a centralized EV charging scheduling method is proposed in
[10] with comprehensive information, achieving peak load
reduction and charging cost savings. Taking into account
the charging urgency indicator, a coordinated EV scheduling
model is developed in [11] to mitigate the peak-valley load
difference. Moreover, a customer feedback-based peak load
management model is established in [12], considering various
spatial-temporal EV penetrations. In the pursuit of flattening
the peak load and minimizing operational costs in [13], a bi-
objective multi-depot EV scheduling problem is formulated
and solved using a tailored branch-and-price approach. No-
tably, this study suggests that EV customers exhibit sensitivity
to high-tariff periods. Therefore, properly pricing the charging
service becomes instrumental in optimizing the operation of
the integrated power-transportation system [14].

Many studies have explored different incentive approaches
to manage the EV load. A geographically variant electricity
prices scheme is proposed in [15] to influence EV charging
patterns and maximize the utilization of FCSs simultaneously.
To mitigate FCS congestion, pricing dynamics are applied in
[16] considering the occurrence of loss of load events. In

our previous work, a dynamic pricing scheme is proposed
to manage the EV load without considering uncertainty [17].
Besides, the menu-based pricing method is proposed in [18]
to manage EVs only considering the route uncertainty. To
tackle uncertainties of charging demand volatility, inherent
intermittency of renewable energy generation, and wholesale
electricity price fluctuation, stochastic dynamic programming
and greedy algorithms are utilized to determine suitable charg-
ing rates and manage electricity in [19]. Aim at maximizing
the profit of EV private charging stations, optimal EV charging
coordination and pricing mechanisms are proposed to coor-
dinate the operation of distributed EV charging stations and
PV farms considering the uncertainties of PV output power
and electricity prices in [20]. Time-of-Use (ToU) rate is also
effective on EV charging scheduling and peak shaving [21],
[22]. The aforementioned uncertainties primarily pertain to
continuous aspects such as price, renewable output, arrival
patterns, and demand. However, uncertainties associated with
binary human decisions have been overlooked.

Due to the unique relationship between FCSs and EVs, the
problem typically exhibits a hierarchical structure, particularly
a bi-level structure [23]. Numerous researchers have dedicated
their efforts to tackling the bilevel problem. From a pure
optimization standpoint, a column-and-constraint generation
(CCG) method is devised after reformulating the bilevel
program into a single-level program in [24] to address the
bilevel mixed-integer program (MIP) within finite iterations.
By decomposing the bilevel problem into a first-stage IP
and a second-stage MIP, a generalized value function method
is introduced in [25] to solve stochastic and bilevel MIP.
In the realm of bilevel robust unit commitment, a Benders
decomposition-based method is proposed in [26]. Notably,
these methods predominantly focus on the optimistic bilevel
formulation. Adopting a data-optimization hybrid perspective,
a reinforcement learning-based approach is proposed in [27]
to address bilevel voltage regulation in distribution systems.
Furthermore, an offline value function calculation and online
schedule-combined bilevel energy management strategy are
introduced in [28] to handle EV loads under probabilistic
traffic patterns. In [29], a bilevel price-based demand-side
energy management problem is solved by a learning-based
optimization method. However, it is worth noting that these
learning-based methods entail prolonged offline training times
and possess limited generalization abilities.

However, incorporating human-choice rationality and so-
lution multiplicity at the lower level makes it a challenging
problem with pessimistic characteristics. For instance, in sce-
narios where multiple options entail the same charging cost
accounting for human-choice uncertainty, the accumulation
of charging power may occur at a particular FCS during a
time slot. This accumulation substantially amplifies the peak-
valley difference, giving rise to challenges such as ramping
burden [30], power congestion [31], and voltage deviation
[32] within the power system. Some existing literature is
concentrated on addressing the pessimistic bi-level problem.
When the lower-level problem is convex, a duality-based
robust solution method is proposed for the bi-level problem
[33]. In [34], a tight relaxation of the pessimistic bilevel



problem is introduced, for the problem with special structure.
It is still hard to solve the bi-level problem with a pure integer
lower-level problem for lacking dual information. In this work,
we propose a Successive Scenario Generation algorithm to
solve the bilevel problem. The most relevant to our work
is CCG [35], but the distinct differences from them are:
1) CCG systematically generates and incorporates decision
variables and constraints into the master problem gradually
by identifying and including significant scenarios, obtaining an
optimal solution within a fixed, finite, discrete uncertainty set.
2) SSG serves as a heuristic optimization method, yielding a
local optimum with a decision-dependent uncertainty set. Our
objective is to determine the time- and location-varying prices
to balance spatiotemporal load using the worst-case scenario
that causes the peak load. If scenarios are added gradually,
feasible prices may be compelled into a flat line throughout the
day, contrary to our goal of guiding charging through time- and
location-varying prices. Consequently, we propose SSG, which
adds only one scenario to the master problem and removes the
corresponding constraints from the last iteration.

Human-choice uncertainty is a challenging topic in the
demand response literature. Even a rational EV owner makes
an FCS-selection decision with uncertainty to some extent, as
it is hard to define the “optimal” choice considering human
preferences. FCS selection uncertainty can result in large step-
wise load differences in the upper level. To fill the research
gap, we study the coordinated operation between PDN and
FCSs considering human FCS selection uncertainty, which
aims at addressing the open question of our earlier work [17].
The incorporation of geographical location information plays
a pivotal role in diverse price settings and enables unified
spatial and temporal load balancing [36], [37]. In this study,
we harness both the geographic and temporal variations of
charging prices to mitigate operational costs and achieve a
flattened netload. This paper proposes robust a bi-level model
and solution approach to determining the Location-Time-of-
Use (LToU) charging rate, extending the Time-of-Use rate with
location information. The main contributions are threefold.

• Human-choice uncertainty is integrated into the robust
bi-level EV load management model, which is ignored
in most literature. By adjusting LToU charging rate in
the upper level, we leverage the EV load response to
flatten the load curve. However, due to lower level
solution multiplicity and inner characteristics, uncertain
charging choices can lead to significantly different load
profiles. Hence, it is fundamentally important to con-
sider the human-choice uncertainties. We also conduct
an exploratory survey in the City of Xi’an, providing a
comprehensive analysis of EV owners’ preferences.

• A novel solution approach is proposed to solve the robust
bi-level optimization model with solution near-optimality
and multiplicity in the lower level. First, it is challenging
to solve the original bi-level problem with a non-convex
integer model at the lower level. We propose a group
of novel optimality conditions, reducing the optimality
constraint (OC) number fromO(n2) toO(n). Second, the
optimality gap and solution multiplicity for human-choice

Fig. 1. The upper-level problem is an optimal power flow model that
determines the LToU charging rate for each FCS. The lower level problem is
to select the near-optimal FCS considering the human choice uncertainty.

uncertainty further complicate the problem. By exploiting
the problem structure, we propose a successive scenario
generation algorithm to find the local optimal solution.

• This work reveals the limitation of price-based EV load
management. By conducting a comprehensive case study,
it is found capability of price-based load management is
restrained by price feasible region, user rationality, and
solution multiplicity. Price-based EV load management
can help reshape the load curve to a certain extent, not
any desired curve even if all EVs respond to the price.

The remainder of this paper is organized as follows. Section
II introduces a bi-level EV load management model consid-
ering human-choice uncertainty. A robust iterative solution
approach is proposed in Section III. In Section IV, case studies
are conducted and the results are analyzed in detail. Finally,
conclusions are drawn in section V with potential future work.

II. MATHEMATICAL MODEL

This work primarily focuses on addressing the human-
choice uncertainty model and developing an algorithm to
tackle the issue of solution multiplicity. As a result, the
charging process and transportation model are simplified for
the purpose of the study. Before we establish the bi-level
model, the assumptions used in this work are presented as
follows.

• Utilities coordinate with FCS operators. For example, The
E.ON group in Germany is one of Europe’s largest opera-
tors of fast-charging networks and energy infrastructure.
State Grid China owns and operates a large volume of
FCSs.

• EV owners charge at the FCS via APP, which gives the
FCS operator access to EV’s location, battery capacity,
and SOC. The FCS operator can acquire the approximate
EV load demand within an area. EV owners can access
information about available charging piles and make
appointments.

• The charging process for electric vehicles is simplified
and does not consider complex factors such as vehicle-
to-grid interactions, bidirectional charging, or advanced
charging strategies. Instead, a basic representation of the
charging process is used, which assumes a single charging



rate per period and a single time slot and FCS to finish
the charging activity.

• The transportation model is also simplified and does
not consider detailed aspects such as traffic congestion,
routing optimization, or vehicle dynamics. Instead, a
simplified representation of the transportation system is
used, focusing on the load impact of electric vehicles and
their charging profiles.

Fig. 1 illustrates the main idea of the proposed bi-level
programming model. The upper level is an optimal power flow
model aiming to flatten the net load profile and reduce the
total operation cost based on LToU pricing. The lower level is
a charging FCS and plug-in time selection model with human-
choice uncertainty whose results form the demand in the upper
level.

This section first presents an abstract form of the bi-level
model. Then, we detail an optimal power flow model for PDN
and FCS selection model for EV. The abstract form of the bi-
level model can be formulated as

(P1) : min
x,π

max
δ∈U

cTx

s.t. Ax+Dy +Gπ ≤ b

y ∈
{
y : fn

(
yn, π

)
≤ z∗n + δn,

z∗n = min
yn∈Dn

fn
(
yn, π

)
,∀n

}
,

where x denotes the continuous variables representing the
nodal power and voltage in the optimal power flow problem
and π represents the LToU charging rate. y denotes the integer
variables for the (near) optimal charging decisions for EVs.
z∗n is the optimal objective value for EV n with least cost.
δn represents the human-choice uncertainty in this work.
fn
(
yn, π

)
represents the charging objective of user n. Dn is

the lower level feasible region of EV n. Other symbols are
the corresponding coefficients. For instance, let c denote the
coefficient vector associated with nodal power and voltage,
where cTx represents the objective function of the upper-level
problem encompassing the total operational cost. Matrices A,
D, and G are the coefficient matrices for power and voltage
variables, charging indicator variables, and charging price
variables, respectively. The inequality Ax + Dy + Gπ ≤ b
encapsulates the constraints of the upper-level problem, incor-
porating power flow and price limits. fn

(
yn, π

)
≤ z∗n + δn

represents the charging selection constraint under human-
choice uncertainty δn.

A. Human Preference and Choice Uncertainty

Before introducing the detailed bi-level optimization model,
we give a detailed description about how to model the human-
choice uncertainty. In practice, the majority of EV owners
prioritize the comfort and satisfaction of the charging service.
Therefore, human preferences for EV charging differ among
customers and are characterized by cost weights (α, β, γ)
assigned to charging rate, distance, and plug-in time in the
proposed model. These varying cost weights contribute to
distinct optimal conditions and significantly impact load man-
agement. Consequently, estimating an EV customer’s charging

preference is crucial for managing the charging load through
appropriate LToU charging rates. To comprehensively analyze
EV owners’ attitudes towards charging rate, distance, and
plug-in time discomfort degree, we conduct an exploratory
survey using a paper-based questionnaire, which includes
numerical rating questions for each factor.

Generally, most EV owners prefer charging at the FCS
offering the minimum overall cost. The optimal value function
is defined as (1).

y ∈ arg min
yn∈Dn

{
fn
(
yn, π

)
,∀n

}
z∗n = min

yn∈Dn

fn
(
yn, π

)
,∀n (1)

However, for a feasible upper-level decision, LToU charging
rate, the solution yn to the lower level is not unique. Besides,
due to human preference, some EV owners may forgo charging
at the FCS with minimum overall cost in exchange for a slight
cost increase δn for specific reasons, referred to as human-
choice uncertainty. To protect itself against possible follower
deviations from its optimality, we seek a decision π at the
upper level that is robust in the sense that it remains near-
optimal or good enough even if the lower level deviates from
its optimality. We then formulate the near-optimal set Z(π, δn)
of the lower level as follows.

Z(π, δn) =
{
y : fn

(
yn, π

)
≤ z∗n + δn

}
B. Upper-level Problem

The upper-level problem is a special optimal power flow
problem, whose load is a (near) optimal solution to a lower-
level FCS selection problem. The objective of the upper-level
problem aims to minimize the total operation costs of PDN in
the whole day. It can also flatten the net load by applying the
stair-like electricity price. The piecewise linear cost function
f(p) is divided by points {0, pseg1,g , · · · , p

seg
L,g}, which can be

formulated by either binary variables or special ordered sets
of type 2 (SOS2) [38]. By introducing continuous wl,g,t and
binary variables ul,g,t, the objective function of upper-level
problem can be described as

f(P ) =

L+1∑
l=1

|G|∑
g=1

T∑
t=1

wl,g,tf(p
seg
l,g ), (2)

with

P gen
g,t =

L+1∑
l=1

wl,g,tp
seg
l,g , ∀t ∈ T ,∀g ∈ G, (3)

w1,g,t ≤ u1,g,t, w2,g,t ≤ u1,g,t + u2,g,t, · · · , (4)
wn,g,t ≤ uL−1,g,t + uL,g,t, wL+1,g,t ≤ uL,g,t, (5)
w1,g,t + w2,g,t + · · ·+ wL+1,g,t ≤ 1, (6)
u1,g,t + u2,g,t + · · ·+ uL,g,t ≤ 1. (7)

In this work, we focus on the FCS pricing scheme and
human-choice uncertainty. Thus, an iterative linearized OPF
model from [39] is employed to represent the power flow
with a good tradeoff between computational efficiency and
accuracy. The uncertain EV load is a function of the LToU



rate which is also determined here. Then, the model is built
as follows.∑

g∈G(i)

P gen
g,t +

∑
r∈R(i)

P pv
r,t−P load

i,t (π)=
∑

(i,j)∈B(i)

P line
ij,t ,∀i, t (8)

∑
g∈G(i)

Qgen
g,t −Qload

i,t (π)=
∑

(i,j)∈B(i)

Qline
ij,t ,∀i, t (9)

P line
ij,t = gij

(
v2i,t−v2j,t

2
+θ̃ij,tθij,t−

1

2
θ̃2ij,t

)
−bijθij,t

+

[
gij

ṽi,t−ṽj,t
ṽi,t+ṽj,t

(
v2i,t−v2j,t

)
+
gij
2

(
ṽ2i,t−ṽ2j,t

)2]
(10)

Qline
ij,t =bij

(
v2j,t−v2i,t

2
−θ̃ij,tθij,t+

1

2
θ̃2ij,t

)
−gijθij,t

−
[
bij

ṽi,t−ṽj,t
ṽi,t+ṽj,t

(
v2i,t−v2j,t

)
+
bij
2

(
ṽ2i,t−ṽ2j,t

)2]
(11)

P gen
g,min ≤ P gen

g,t ≤ P gen
g,max, ∀g, t (12)

Qgen
g,min ≤ Qgen

g,t ≤ Qgen
g,max, ∀g, t (13)

v2i,min ≤ v2i,s,t ≤ v2i,max, ∀i, t (14)
1

T

∑
t∈T

πk,t = π̄k, ∀k (15)

πk,t =
∑

s∈S
Uk,t,sπ̂k,t,s (16)∑

s∈S
Uk,t,s = 1,∀k, t (17)

πk,min ≤ πk,t ≤ πk,max, ∀k, t (18)
∆πk,min ≤ πk,t+1 − πk,t ≤ ∆πk,max, ∀k (19)

The nodal active and reactive power balance equations are
formulated as (8) and (9). Equation (10) and (11) are linear
active and reactive power flow constraints by regarding v2i,t as
a new independent variable. The capacity of active and reactive
power for generators is denoted by (12) and (13). Voltage
magnitude is bounded in (14). Apart from the electrical
constraints, it is practical to enforce regulation constraints on
charging rates in oligopoly markets. Therefore, we consider
that the average price of each FCS for the whole day is fixed
in equation (15). Equations (16) and (17) denote the process by
which the charging price is determined from a discrete price
map, ensuring the selection of only one price per FCS during
each time slot. At the same time, each FCS’s charging rate
should be bounded within a range (18). Besides, to prevent
the dramatic price variations, constraints (19) is applied. As a
side note, one could alter the regulatory constraints.

C. Lower-level Problem

In the lower-level problem, it is assumed that EV owners
act rationally, selecting FCS based on factors such as charging
rate, distance, and plug-in time preference. Charging rates
are assumed to be publicly accessible for all EVs within a
specific area. Consequently, the lower-level objective function
includes charging fees, distance, and plug-in time discomfort
degree. Based on the human-choice uncertainty and near-
optimal set detailed in Section II-A, the lower-level model

is thus formulated as follows.

In,k,t ∈

{
I :

K∑
k=1

T∑
t=1

Cn,k,t(π)In,k,t ≤ C∗
n + δn (20)

C∗
n = min

In,k,t

K∑
k=1

T∑
t=1

Cn,k,t(π)In,k,t (21)

Cn,k,t(π)=απk,tEn+βT tr
n,k+γηn,t (22)

T∑
t=1

K∑
k=1

In,k,t = 1, ∀n ∈ E

}
(23)

The binary variable In,k,t is a selection indicator, with
In,k,t = 1 if EV n chooses to charge at FCS k at time slot t,
and 0 otherwise. Constraint (20) signifies that EV owners opt
for a near-optimal FCS. Equation (21) seeks the least objective
value C∗

n for each EV customer. The objective value of EV n
charging at FCS k during time t is denoted by Cn,k,t(π) and
comprises three components including charging fee, distance
cost, and plug-in time discomfort, as illustrated in equation
(22). Equation (23) ensures that each EV is charged only once
finished in one FCS, preventing multiple charging sessions
within a single time slot. By considering equation (23), the
study aims to accurately represent the charging behavior, i.e.
human-choice uncertainty. However, it is important to note that
these assumptions should be carefully considered in real-world
applications including charger allocation and waiting scenes.

D. Bi-level Programming Model

The EV load is an aggregation of the charging demand
for all EVs at each node. As demonstrated in (20)-(23), EV
charging choice is a function of charging rate, distance, and
the discomfort degree associated with plug-in time. The EV
charging load at node i is defined as

P cs
i,t =

∑
k∈K(i)

∑
n∈E

In,k,tPn, (24)

where K(i) is set of all FCSs located at node i, and E is set
of all EVs. Accordingly, the total load at node i is

P load
i,t (π) = P d

i,t + P cs
i,t . (25)

Finally, a robust bi-level programming model is formulated
as

(P2) : min
π

max
I

f(P )

s.t. (3)-(19),(24),(25)

In,k,t ∈
{

(20)-(23)
}
.

III. SOLUTION METHODOLOGY

This section presents an approach to solve the proposed ro-
bust bi-level model. First, we establish near-optimal conditions
for the lower-level problem and recast the original pessimistic
bi-level programming model into a robust ‘min-max’ mixed-
integer linear programming (MILP) model. Then, the novel
successive scenario generation method is proposed to find the
local optimal solution.



A. Near-optimality Condition

The main difficulty is the user rationality and solution
multiplicity in the lower-level problem. In order to consider
human-choice uncertainty, we model a feasible region in the
lower level rather than a single optimal point. Therefore, we
propose to establish a group of conditions to represent the
lower-level FCS selection problem solutions.

Proposition 1. Cn,k,t(π) in (22) is the minimum objective
value for EV n, if and only if

Cn,k,t(π)In,k,t ≤ Cn,k′,t′(π),∀k′ ∈ K\k, t′ ∈ T \t, (26)∑
t∈T

∑
k∈K

In,k,t = 1.

Constraint (26) ensures the optimal objective and choice
of EV owners in the lower-level problem. By employing the
big-M method, the optimality condition is reformulated as

Cn,k,t(π)≤Cn,k′,t′(π)+(1−In,k,t)M,∀k′∈K\k,t′∈T\t(27)∑
t∈T

∑
k∈K

In,k,t = 1.

These optimality conditions are computationally expensive.
The computational complexity is O(|K|2|T |2). To address this
problem, we propose a novel group of optimality conditions
whose computational complexity is O(|K||T |). Let zn repre-
sent an auxiliary variable, with its optimal value denoting the
minimum cost of EV n. The lower level problem (21)-(23) is
equivalent to

max
zn

zn (28)

s.t. zn≤απk,tEn+βT tr
n,k+γηn,t,∀k ∈K, t ∈T . (29)

The dual of the above problem is written as

min
µn,k,t

K∑
k=1

T∑
t=1

µn,k,t(απk,tEn+βT tr
n,k+γηn,t) (30)

s.t.
K∑

k=1

T∑
t=1

µn,k,t = 1 (31)

µn,k,t ≥ 0, ∀k ∈ K, t ∈ T , n ∈ N , (32)

in which, µn,k,t serves as the dual variable for constraint
(29), while equation (31) represents the constraint in the
dual problem for the auxiliary variable zn. According to the
strong duality of the linear programming problem, we have
the proposition below.

Proposition 2. The optimal solution to problem (28)-(29) is
attained if and only if

zn =

K∑
k=1

T∑
t=1

µn,k,t(απk,tEn + βT tr
n,k + γηn,t), (33)

zn ≤ απk,tEn + βT tr
n,k + γηn,t, ∀k ∈ K, t ∈ T , (34)

K∑
k=1

T∑
t=1

µn,k,t = 1, (35)

µn,k,t ≥ 0, ∀k ∈ K, t ∈ T , n ∈ N . (36)

We observe that µn,k,t always takes values of either 0 or 1.
As a result, equation (33) consistently holds, allowing µn,k,t

to be replaced by the binary variable In,k,t. In other words,
the dual problem (30)-(32) is equivalent to the primal problem
(28)-(29).

By establishing the optimality conditions and substituting
µn,k,t with the binary variable In,k,t, the lower-level problem
incorporating human-choice uncertainty is reformulated as a
set of constraints. For a given upper-level decision π and
optimality tolerance δn, EV owners may choose any option
in the feasible region from the proposition below.

Proposition 3. The original lower level charging selec-
tion problem (20)-(23) is equivalent to the following near-
optimality conditions.

I:

{
K∑

k=1

T∑
t=1

In,k,t(απk,tEn+βT tr
n,k+γηn,t)≤zn+δn (37)

zn ≤ απk,tEn + βT tr
n,k + γηn,t,∀k∈K, t∈T (38)

K∑
k=1

T∑
t=1

In,k,t = 1 (39)

In,k,t ∈ {0, 1}, ∀k ∈ K, t ∈ T , n ∈ N

}
(40)

There are bi-linear terms In,k,tπk,t in (37), which can
be linearized by auxiliary variable φn,k,t with linearization
constraints

(In,k,t − 1)πk,max + πk,t ≤ φn,k,t ≤ πk,t, (41)
In,k,tπk,min ≤ φn,k,t ≤ In,k,tπk,max, (42)
In,k,t ∈ {0, 1}. (43)

The original robust bi-level programming model is then
recast as a novel robust “min-max” model.

(P3) : min
π

max
I

f(P )

s.t. (3)-(19),(24),(25),(37)-(39),(41)-(43)

B. Successive Scenario Generation Method

Although near-optimality conditions are established, the so-
lution multiplicity of lower-level problem causes the difficulty.
It is hard to solve because of the mixed integer structure and
pure integer-related objective [24]. To overcome the above
problem, we present a successive scenario generation (SSG)
method. The main idea is to find a near-optimal solution
considering the optimality gap between the worst and best-
case scenarios. The best-case scenario (MP) and worst-case
scenario (SP) are solved iteratively. Specifically, the two ob-
jectives are opposite. The main goal of the (MP) is to identify
the most efficient charging prices for FCSs, minimizing the
utility’s operational costs. On the other hand, the SP is
formulated to determine the least favorable charging choices
for uncontrollable EVs, ultimately maximizing the utility’s
operational costs.

Algorithm 1 summarizes the iterative solution process for
the best-case problem (MP) and worst-case problem (SP). The
LToU charging rate is updated using the worst-case charging
load information obtained from the solution to SP. In which,



Φ,Φ
(i)
b , and Φ

(i)
w are sets of all EVs, controllable EVs, and

the top Ns worst uncontrollable EVs.

(MP) : Zlb = min
π

f(P )

s.t. (3)-(19),(24),(25),(37)-(39),(41)-(43)

In,k,t = I
(i−1)
n,k,t ,∀n ∈ Φ(i−1)

w , k, t (44)

In,k,t ∈ {0, 1},∀n /∈ Φ(i−1)
w , k, t (45)

(SP) : Zub = max
I

f(P )

s.t. (3)-(19),(24),(25),(37)-(39),(41)-(43)
In,k,t ∈ {0, 1}, ∀n, k, t (46)

πk,t = π
(i−1)
k,t , ∀k, t (47)

Upon analyzing the problem structure, it becomes apparent
that the behaviors of each EV in problem SP are independent
once the charging prices are determined in the MP problem.
This observation allows for the deconstruction of the SP
into subproblems for each individual EV. Within each EV
subproblem, the set of charging choices can be derived via
a closed-form equation and subsequent sorting of costs across
all FCSs and time slots. This decentralized approach exhibits
commendable performance, especially in terms of scalability
when applied to large-scale problems.

Proposition 4. Let Z∗ be the global optimal value of problem
(P3), then Zlb is a lower bound of Z∗, and Zub is an upper
bound of Z∗. An acceptable solution π∗

k,t is attained when
Algorithm 1 converges, and the optimality gap

Zub − Z∗ ≤ ∆. (48)

Proof. The LToU charging rate π
(i)
k,t attained from (MP) may

not be the optimal. Hence, when it is not optimal, there exists

Algorithm 1: Successive Scenario Generation Method.

Input: Base load: pdi,t;EV parameters: En, T
tr
n,k, ηn,t.

Output: Charging rate πk,t; Charging choice In,k,t.

1 Initialization: i← 0, tolerance ∆, upper/lower bound
Zub ← +∞, Zlb ← −∞;

2 Formulate the MP and SP.
3 Solve MP, get π(0)

k,t and Zlb; slove SP with π
(0)
k,t , get

I
(0)
n,k,t for n ∈ Φ

(0)
w and Zub; calculate

Gap = Zub − Zlb; set i← 1.
4 while i ≤ Ni or Gap ≥ ∆ do
5 Add worst-case uncontrollable charging load to the

base load; solve MP with In,k,t for n ∈ Φ\Φ(i−1)
w ,

get π(i)
k,t, I

(i)
n,k,t for n ∈ Φ

(i)
b and Zlb

(i); if
Zlb
(i) ≥ Zlb, Zlb ← Zlb

(i);

6 Slove SP with π
(i)
k,t, get I(i)n,k,t for n ∈ Φ

(i)
w and

Zub
(i); if Zub

(i) ≤ Zlb, Zub ← Zub
(i);

7 Calculate Gap = Zub − Zlb;
8 Update i← i+ 1;
9 end

a new set of charging choice I
′

n,k,t that satisfy

f∗(P , I
′

n,k,t) ≤ f(P , I∗n,k,t) = Zub. (49)

In the meantime, I∗n,k,t attained from (MP) towards optimism.
For any other choice I

′′

n,k,t of EVs, we have

f∗(P , I
′′

n,k,t) ≥ f(P , I∗n,k,t) = Zlb. (50)

Therefore, Zub − Z∗ ≤ ∆.

The algorithm works efficiently. However, it may give a
local optimal solution. We are working on an approach to
finding the global one.

IV. CASE STUDY

This section presents the implementation of the proposed
LToU dynamic pricing scheme on an interdependent 69-node
distribution system and 45-node transportation system, as
shown in Fig.2 and Fig.3, to demonstrate its performance.
FCSs labeled by the same color are located at road intersec-
tions 13, 21, 25, and 34, connecting with nodes 23, 35, 42, and
47 in the 69-node PDN. Firstly, the data of the tested system
is prepared. Then, cases are conducted based on optimistic
and robust LToU pricing schemes to illustrate the effectiveness
of robust LToU pricing scheme and SSG algorithm. All case
studies are coded in C++ and solved using GUROBI 9.1.2.
The program runs on an Intel(R) Xeon(R) Gold-5118 2.3-GHz
server with 256G memory.

A. Data Preparation

In the interdependent system, FCSs are situated at road
intersections 13, 21, 25, and 34, which are connected to nodes
23, 35, 42, and 47 in the 69-node power distribution network
(PDN). Additionally, a 1MW PV station is integrated into the
distribution system at node 12. The capacity factors for each
hour within a 24-hour period are presented in Table I. The
hourly load demand is derived from case-69 in MATPOWER
[40], with the ratio of hourly load to base load (i.e., load in
case-69) detailed in Table I, based on the general load profile.

The specific navigation strategy of EVs in the transportation
system is beyond the scope of this paper. Therefore, the
traveling time to the FCS is assumed to be proportional to
the shortest distance. Each FCS is equipped with 10 chargers.
Additionally, the battery capacity and the rated charging power
of each EV are set to 80 kWh and 80 kW, respectively.

Fig. 2. Topology of the 69-node distribution system.



Fig. 3. Map of a 45-node district in Xi’an city.

TABLE I
PV RELATIVE CAPACITY FACTOR AND RELATIVE LOAD RATIO.

Time slot Capacity factor Relative load ratio

1-6 0.00 0.00 0.00 0.02 0.05 0.15 0.72 0.71 0.71 0.76 0.86 0.97

7-12 0.32 0.54 0.70 0.83 0.97 1.00 1.03 1.04 1.05 1.05 1.03 1.01

13-18 0.95 0.84 0.66 0.45 0.27 0.12 1.00 0.99 0.98 0.99 1.00 1.01

19-24 0.03 0.00 0.00 0.00 0.00 0.00 0.98 0.92 0.88 0.83 0.78 0.74

TABLE II
STEPWISE ELECTRICITY PRICE OF NETWORK INJECTION POWER.

Power injection (MW) 0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-Pmax

Electricity price ($/MW) 74.02 81.42 118.43 207.23 296.09

For simplicity, it is assumed that each FCS can fully charge
the EV within one hour. To prevent oligopoly, the average
charging rate is set to be $0.15/kWh in each FCS for all
time slots in this paper [41]. The discrete charging price map
consists of nine equally spaced price points ranging from
$0.075/kWh to $0.225/kWh. Stair-like electricity prices are
used to calculate the PDN operation cost, which is illustrated
in Table.II. Generally, the majority of EV owners exhibit a
preference for daytime charging due to its convenience. The
discomfort degree for plug-in time is randomly generated, with
sampling based on uniform distribution [0, 0.5] from 9:00
to 22:00, and [0.5, 1.5] during the night and early morning,
spanning from 23:00 to 8:00. The value of big M is 150. The
initial position and SOC of each EV are generated by random
simulation.

Fig. 4. The sampled attitudes towards to charging fees α, travelling cost β,
and plug-in time preference γ of 50 EV owners.

Fig. 5. Net load versus time without considering uncertainty.

B. Performance of LToU Pricing Scheme

The comfort and satisfaction of the charging process greatly
impact the load profile due to the varying responses of
customers to charging rate, distance, and plug-in time. The
optimal conditions for EV owners are various. Understanding
human preference for these factors is critical in designing
an effective pricing scheme and efficient load management.
With the aim of providing a comprehensive analysis of the
attitudes of EV owners towards the charging process, we
conduct an exploratory survey involving 500 EV owners
in Xi’an, China. Utilizing data collected through a paper-
based questionnaire, the preference weights of the samples
are distilled into 50 representative points employing the k-
means clustering method [42]. The clustering centers serve as
resulting samples and are visualized in a three-dimensional
scatter plot. All of the samples are located on the plane
α + β + γ = 1, and are labeled with their corresponding
EV index shown in Fig.4. From the survey results, we can
find that EV-27 focuses only on distance, while EV-15 only
considers the charging rate. Furthermore, EV-17, -22, -33, and
-37 do not consider plug-in time as a priority.

Fig. 6. Charging rate and percent of charging EVs versus time at 4 FCSs
based on optimistic LToU.



Fig. 7. Charging rate and percent of charging EVs versus time at 4 FCSs
based on robust LToU.

1) Necessity of Robust Load Management: The hourly
charging load is partially influenced by the charging rate,
making it necessary to investigate the relationship between
these two factors. In reality, not all EV owners align their
charging decisions with the preferences of the PDN while con-
sidering human-choice uncertainty. When some EVs deviate
from the optimistic scenario’s charging decisions, it signifi-
cantly impacts the objective value and peak load. This scenario
represents the pessimistic scenario, where uncontrollable EVs’
choices result in a worst-case upper-level objective.

Fig.5 illustrates the net load curves. The red solid line rep-
resents the net load profile with EV demand in the pessimistic
scenario, which exhibits a new peak at 22:00 compared to the
optimistic scenario due to human-choice uncertainty. Addition-
ally, the objective value rises from $5,278.3 in the optimistic
scenario to $5,290.7 in the pessimistic scenario. Therefore, it
is crucial to propose a robust LToU pricing scheme that aims
to flatten the net load curve by partially managing the EV
loads.

2) Effectiveness of Load Management: To demonstrate the
viability of the proposed model and algorithm for managing
the EV load and flattening the duck curve, we conduct cases
with 50 EVs, 30 controllable and 20 uncontrollable EVs,
across 24 time slots. The individual preference weights of each
customer are obtained through questionnaires. We compare the
proposed robust LToU with the optimistic LToU below:

• Optimistic LToU pricing scheme for EV load manage-
ment, in which the problem MP is solved only once.

• Robust LToU pricing scheme for EV load management,
in which MP and SP are solved iteratively by algorithm 1.
Add the top 70% worst-case uncontrollable charging
loads to the base load in each iteration.

Fig.6 and Fig.7 present the hourly charging rate and number
of EVs charging over time for all FCSs based on the optimistic
and robust LToU in the pessimistic scenario, which assumes
lower level contributes to a worst upper-level objective. Fig.6

Fig. 8. Net load profiles under robust and optimistic LToU.

Fig. 9. The optimality gap of MP and SP.

shows that many EVs are charging during the shoulder-price
and off-peak-price periods under the optimistic LToU price
scheme. However, many EVs charge at the non-lowest-price
slot at 22:00 across all four stations forming a new peak
because of human-choice uncertainty. In Fig.7, it is observed
that few EVs charge at 22:00 in FCS-2, -3, and -4 when
charging rates are high, and only 10% of EVs charge at
22:00 in FCS-1. Additionally, an interesting observation is
that some EVs charge during periods with non-lowest prices.
For example, 6% of EVs are charging in FCS-4 at 20:00
although the prices are not the lowest. This is because these
EVs prioritize their preferred plug-in-time over charging fees.
The results suggest that the robust LToU pricing scheme is
more effective in managing EV loads by leveraging location
and temporal information.

With the plug-in time and FCS selection information, we
can calculate the net load with the added EV load. Fig.8
displays the net load curves. The net load, incorporating
PV, without EV loads shows two peaks in the morning and
evening, as depicted by the dashed-dotted line. The red solid
line represents the optimized net load profile with EV demand
based on optimistic LToU, while the blue solid line shows the
optimized net load based on robust LToU. It is obvious that a
peak load is caused based on optimistic LToU (i.e. 3.576 MW)
which is almost equal to the morning peak (i.e. 3.678 MW) and
evening peak (i.e. 3.710 MW). By using the proposed robust
LToU price-based EV load management scheme, the worst-
case new peak is mitigated. Besides, the pessimistic objective
value based on robust LToU is $5,282.0 which is very close
to the optimistic scenario.

3) Convergence Performance of SSG: To illustrate the
convergence of the proposed algorithm, Fig. 9 presents the



Fig. 10. Performance comparison under different selected EV sequences.

optimality gap versus iteration number and the comparison of
the total cost of MP and SP. It is noted that the upper and lower
bounds are the optimal values of SP and MP respectively.
The optimality gap is the difference between the upper bound
and lower bound. As shown by the solid line, the optimality
gap decreases with iteration in general. After 6 iterations, we
observe that both the upper bound and the optimality gap
remain unchanged with iteration. Therefore, we conclude that
the proposed SSG method requires 6 iterations to achieve
a converged solution. The optimality gap reduces by 72.6%
(i.e., (12.4-3.4.)/12.4). After it converges, the largest objective
violation is $3.4. In other words, the cost in the worst-case
scenario is decreased. It indicates that the proposed robust
LToU price scheme exhibits robustness.

4) Effectiveness of Selected Worst EV Sequence: The SSG
method employs the worst N uncertain EVs, which contribute
to the peak load from the SP, to generate scenario-related con-
straints incorporated into the MP. To assess the effectiveness
of the scenario generation scheme, simulations are conducted
with different EV sequences, including the top worst N , the
ordered first N , the ordered last N , and a random selection
of N . The iteration times and optimality gaps are illustrated
in Fig.10. In the proposed scheme, the iteration time is 6,
whereas it is 10, 9, and 15 in the first, last, and random
schemes, respectively. This discrepancy arises because the
selected EVs in other schemes might be charging during valley
or shoulder periods contributing less to the pricing process,
thereby slowing down the convergence speed. The simulation
results indicate that the proposed sequence of the top N worst
uncertain EVs exhibits the fastest convergence speed and the
smallest optimality gap.

5) Economic Performance of EV Customer: In addition
to the optimality of the upper-level problem, it is worth
considering the economic performance of EV owners in the
lower-level problem. For the part of controllable EVs, all EV
owners charge at the FCS with the minimum overall cost.
However, in the uncontrollable part, some EVs charge at FCSs
where the overall cost is not the minimum.

Fig.11 illustrates the objective value associated with dif-
ferent choices for EV-44 in the best and worst scenarios. In
the best scenario, it charges at FCS-1 in the 23th time slot,
resulting in a cost of 0.424. Conversely, in the worst scenario,
EV-44 charges at FCS-1 in the 6th time slot, incurring a cost
of 0.434. Although the objective is not the minimum, it still
falls within a near optimality for δ44. The numerical results

TABLE III
PERFORMANCE OF LTOU PRICING UNDER DIFFERENT UNCERTAINTY

RANGES.

Uncertainty
Range w/o Base +5% +10% +15% +20%

Original Gap 0 2.3‰ 3.9‰ 5.5‰ 6.5‰ 11.4‰
Optimized Gap 0 1.1‰ 2.1‰ 4.0‰ 4.4‰ 6.5‰
Iteration Times - 6 9 13 14 17
Running Time 7.07s 45.63s 78.31s 117.93s 125.62s 133.98s

demonstrate that the proposed robust LToU pricing scheme
effectively manages the EV load while ensuring the economic
performance of EV owners.

C. Scalability of Human-choice Uncertainty Model

1) Extension to Time-dependent Traveling Time Scene:
Moreover, considering the shortest path, the traveling time
varies due to time-dependent traffic congestion. To assess the
effectiveness of the proposed model, we extend the cases
to include scenarios with time-dependent traveling times.
Consequently, we reformulate human choice as a function of
traveling time rather than distance, expressed as

Cn,k,t(π)=απk,tEn+βT tr
n,k,t+γηn,t, (51)

in which, T tr
n,k,t is the time-dependent traveling time.

In Fig.12, the net load curves in the time-dependent trav-
eling time scenario are presented. The peak load based on
the robust LToU at 18:00 is 3.710 MW, which is lower than
the peak load based on the optimistic LToU at 16:00, which
is 3.790 MW. As previously established, the proposed robust
LToU pricing scheme mitigates the worst-case peak load.
Furthermore, the iteration times in the two cases are 6 and 5,
respectively. Thus, we can infer that the robust LToU pricing
scheme also contributes to flattening the net load curve by
effectively managing EV loads in the time-dependent traveling
time scenario.

2) Impact of Human-choice Uncertainty Range: Based on
the proposed human-choice uncertainty model, we observe an
expansion in the uncertain choice region of EV owners as the
uncertainty range increases. To analyze the effects of distinct
uncertainty ranges on the performance of the proposed method,
we conduct simulations under various scenarios: cases without
uncertainty, those with base uncertainty obtained through a
questionnaire, and those with a 5%-20% uncertainty increase.
The detailed results are presented in Table III. The findings
indicate that iteration times, running time, and optimality gaps
increase with a larger uncertainty range. This suggests that EV
owners with a broader uncertainty range become less sensitive
to price, thus unveiling a limitation in price-based EV load
management.

3) Impact of Uncertain Charging EV Quantity: To further
validate the effectiveness of the proposed near-optimal search-
ing algorithm, we conduct experiments with different levels of
uncertainty in the number of charging EVs. Table IV presents
the optimality gap and iteration times for each case with vary-
ing levels of uncertainty. The results show that the proposed



Fig. 11. Costs of different choices for EV-44. EV-44 chooses to charge at time 5 and time 24 in FCS-1 under the worst and best scenarios respectively.

Fig. 12. Comparison of net load profiles under robust and optimistic LToU
considering traveling time rather than distance.

TABLE IV
PERFORMANCE UNDER DIFFERENT UNCERTAIN CHARGING EV

QUANTITIES.

Uncertain Quantity 20% 40% 60%

Original Gap 0.3‰ 2.3‰ 7.7‰
Optimized Gap 0.1‰ 1.1‰ 4.8‰
Iteration Times 2 6 13

TABLE V
THE MODEL SCALE OF TWO DETERMINISTIC OC CASES.

OC # Cons. Non-zeros Continuous Integer # Var.

OC1 486,334 1,458,680 18,384 5,760 24,144
OC2 49,584 153,130 23,234 5,760 28,994

algorithm achieves a reduction in the optimality gap, with a
reduction of 66.7% in cases with 20% uncertain EVs. Even in
cases with higher levels of uncertainty, when the uncertain EV
quantity equals 60%, the algorithm still achieves a substantial
reduction in the optimality gap, approximately 37.7%. These
findings indicate that the proposed algorithm is effective in
addressing the challenges posed by this particular type of
pessimistic bi-level mixed-integer programming problem.

4) Computational Performance: In this section, our main
focus is to evaluate the computational performance of the
optimality condition models introduced in Section III. After
analyzing the model, we have found that the most time-
consuming part is the large number of optimality condition
constraints. We label the optimality conditions in proposition 1
and proposition 3 as OC1 and OC2, respectively.

Table V presents the scale of the models for two cases with

TABLE VI
THE COMPUTATIONAL TIME OF EACH MODEL WITH DIFFERENT EVS.

Model
EV number

50 100 150 200

OC1 39.65s 85.55s 219.47s 675.68s
OC2 2.97s 32.34s 87.17s 252.38s

50 EVs. It is observed that the number of constraints with
OC1 is significantly higher than with OC2. For instance, the
number of constraints in OC1 is 486,334, while it is 49,584
in OC2. However, it is noted that the number of continuous
variables with OC2 is slightly higher than with OC1 due to
the newly added ancillary variables. Additionally, the number
of integer variables for the two OC methods is the same in
the same case, as they are the charging-choice and price-map
indicators.

To compare the efficiency of two OCs, we conduct four
cases, namely case-1 to case-4, with 50, 100, 150, and 200
EVs, respectively. Table VI presents the computational times
for four cases with two different optimality condition methods
in the deterministic models. The results show that the com-
putation time of the model with OC2 is much less than that
of OC1 in all cases. Furthermore, the computation time of
the model with OC1 increases dramatically with the scale of
the problem, whereas the time consumed in the model with
OC2 increases slowly. The results indicate that the proposed
optimality conditions (OC2) method is effective in reducing
computational burden.

5) Impact of Different Demand Levels: To analyze the sys-
tem performance under varying demand levels, we conducted
simulations with 50, 100, 200, 300, 400, and 500 charging
EVs. The results, encompassing iteration times, running time,
and optimality gaps, are presented in Table VII. It is observed
that both the optimistic and robust optimality gaps increase
with a larger quantity of EVs, owing to the corresponding
increase in uncertain charging choices. Furthermore, the pro-
posed algorithm requires more iteration times and running
time due to the enlarged model scale. Notably, even with
500 EVs, the robust LToU approach reduces the optimality
gap from 97.1‰ to 16.0‰ within 2 hours. This indicates
that our method can achieve a near-optimal solution within
a reasonable running time and optimality gap, even with a
higher number of EVs.



TABLE VII
PERFORMANCE OF LTOU PRICING UNDER DIFFERENT DEMAND LEVELS.

EV Quantity 50 100 200 300 400 500

Original Gap 2.3‰ 10.8‰ 20.7‰ 41.6‰ 65.3‰ 97.1‰
Optimized Gap 0.2‰ 4.4‰ 7.2‰ 9.5‰ 13.4‰ 16.0‰
Iteration Times 6 9 12 14 17 21
Running Time 45.6s 218.3s 1062.2s 2319.1s 3823.5s 6249.3s

Fig. 13. Nodal voltage based on optimistic LToU.

6) Voltage Security Analysis: The widespread integration
of EVs poses the risk of undervoltage challenges in the
distribution system. Analyzing the impact of human-choice
uncertainty on nodal voltage becomes crucial. To affirm the
effectiveness of the proposed method, we enhance the chargers
in each FCS to 30 and the total charging EVs to 400.
Subsequently, the voltage profiles of the distribution system,
both with and without the robust method, are depicted in Fig.
13 and 14.

Here, the worst-case scenario is the uncertain charging
choices leading to the lowest voltage. Fig.13, shows that the
voltages from node-23 to node-27 at 10:00 fall below the
secure voltage limit (i.e., 0.95). The lowest voltage magnitude
is 0.948 based on optimistic LToU, highlighting that ne-
glecting human-choice uncertainty may lead to undervoltage.
Conversely, by accounting for human-choice uncertainty, the
lowest voltage magnitude based on robust LToU is 0.956, as
shown in Fig.14. This implies that undervoltage does not occur
under robust LToU, underscoring the robustness of robust
LToU in addressing human-choice uncertainty.

V. CONCLUSION

This work presents a robust LToU price-based optimiza-
tion model to manage EV load considering human-choice
uncertainties. A bi-level programming model is developed
to formulate the optimal power flow model and mimic the
EV’s charging behavior. It attacks the low-level human-choice
uncertainty, which is still an open question in the community.
By establishing a group of near-optimality conditions for the
lower level problem, we model a feasible region rather than a
point for human behaviors, and propose a successive scenario
generation algorithm to solve the problem. The simulation

Fig. 14. Nodal voltage based on robust LToU.

results show that the robust LToU pricing scheme can par-
tially incentivize EVs to charge at desired nodes and time,
effectively managing the load.

For future work, we will consider more detailed models in
the transportation sector, including vehicle-to-grid and traffic.
Besides, we are working on different approaches to attacking
low-level uncertainties in the robust bi-level models.
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