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Abstract—Due to the expensive deployment cost, finding the
minimum Phasor Measurement Unit (PMU) to meet the ob-
servability requirement has been attractive since the invention
of PMU. Many research efforts have been put to zero-injection
nodes (ZINs) in optimal PMU placement (OPP). We revisit OPP
and define a full Zero-injection cluster (ZIC) as a set of nodes
adjacent to ZINs together with at least one ZIN, establishing
a novel ZIC-based OPP model. Compared with the existing
literature, the full ZIC can cover more nodes, resulting in a better
solution. To find all full ZIC, we propose a dynamic adjacency
matrix based full-ZIC search algorithm, which has quadratic-
time complexity. It could have wide applications, and can be
applied in many OPP works. Besides, redundant PMUs within
the full ZIC can be shared within large areas post contingency. A
concept of redundancy sharing is proposed for post-contingency
Z1C model, whose observability can be guaranteed with proposed
redundancy-sharing conditions. Comprehensive case studies are
conducted using the proposed approaches. The simulation results
for both IEEE cases and a real-world system show the proposed
method can further reduce PMU deployment number.

Index Terms—Optimal PMU placement, Zero-Injection Clus-
ter, Cluster Search, Redundancy Sharing, Integer Linear Pro-
gramming

I. INTRODUCTION

Phasor measurement units (PMU) are high-precision devices
capable of providing synchronized phasor measurements of
voltages and currents [1], [2]. A reference time signal provided
by the global positioning system (GPS) renders the synchro-
nization of acquired data [3]. In response to the demand for
system state observability in intelligent power systems, PMUs
serve as the most suitable technological devices for wide-area
measurement systems [4], [5]. PMU applications range from
state estimation to frequency stability, and disturbance/outage
monitoring [6], [7]. However, its cost and space constraints are
often the barriers limiting PMU deployment [8]. Technically,
having PMU placed on every node is unnecessary, as the PMU
can capture the nodal voltage as well as branch currents inci-
dent to it [9], [10]. Hence, achieving the overall observability
of systems via the minimum number of PMUs has become an
interesting problem for PMU placement, namely the optimal
PMU placement (OPP) problem [11], [12].

The OPP problem is inherently an NP complex problem
with a decision space of 2%V possible solutions for an N-node
system [13]. In recent years, a diversity of algorithms and
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methods for determining the optimal PMU placement have
been proposed, which can be generally classified into two cat-
egories [13], [14], namely heuristic and deterministic methods.
Researchers have employed interesting heuristic methods to
optimally place PMUs, such as genetic algorithms [15], [16],
particle swarm optimization [17], imperialistic competition
algorithms, TABU search [18], etc. By elaborating computer-
recognizable observability criteria, the feasibility and opti-
mality of the solutions are repeatedly analyzed during the
convergence process. In contrast, well-received deterministic
techniques have also been applied to solve the OPP problem,
including integer linear programming (ILP) [14], [19], integer
nonlinear programming [20], semidefinite programming (SDP)
[21], etc.

In the OPP literature, zero-injection nodes (ZINs) or zero-
injection buses (ZIBs) , i.e., nodes/buses not connected with
any generator or load, are widely leveraged for developing ob-
servability conditions that can provide additional information.
ZINs are often named in distribution system while ZIBs are
typically defined in bulk system. As the techniques discussed
in this work apply for both distribution and bulk systems,
we refers ZIN/ZIB as ZIN unless specified. The number of
reducible PMUs is positively related to the number of ZINs.
Xu et al. [22] improves the OPP model by reconfiguring
constraints related to ZIN. They elaborate logical expressions
by performing AND and OR operations on the basic OPP
constraints. Authors in [13] model the ZIN effect by intro-
ducing auxiliary variables. All ZIN-related constraints can be
dropped after recasting the model. Instead of treating each
ZIN independently, models established in [23] take advantage
of adjacent ZINs by hypothetically merging them into a single
bus. In reference [16] and [24], numerical rules for neighbor-
ing ZINs are proposed. Their experimental results indicate that
considering adjacent ZINs can further reduce the number of
PMUs. Notably, due to the lack of a deterministic mathemati-
cal formulation, both methods adopted heuristic algorithms for
repetitively checking whether the proposed criterion is met.
Subsequently, Abdulrahman et al. [25] proposed the idea of
zero-injection cluster (ZIC) to incorporate neighboring ZINs
and all the incident nodes together.

Generally, existing ZIN models can be classified into two
categories, i.e. the basic ZIN model and advanced model con-
sidering adjacent ZINs. The former sets separate observability
constraints for each ZIN. The latter tries to consider adjacent
ZINs as a whole. However, most advanced models in the litera-
ture only include directly-adjacent ZINs, missing regular nodes
connected ZINs. This is referred to as partial Zero-Injection
Cluster (ZIC) for differentiation. We find that covering ZINs



(a) Basic ZIN model

(b) Partial-ZIC model
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(c) Full-ZIC model proposed in this paper

Fig. 1: Illustration of different ZIN models. Nodes 3, 4, and 8 are ZINs. Nodes in the same dashed box are modeled together.

that connected via regular nodes can significantly reduce the
PMU number in many cases. Fig. 1 gives an illustration of
different ZIN models. Fig. 1 (a) depicts the basic ZIN model,
in which ZINs 3, 4, and 8 are considered independently. Fig.
1 (b) shows the partial ZIC model that only considers directly-
adjacent ZINs, i.e., 3 and 4, resulting two ZICs. The first ZIC
includes nodes 9, 8, and 7. The second ZIC is nodes 7, 11, 2,
3, 4, and 5. Fig. 1 (c) illustrates the proposed full-ZIC model,
in which there is only one ZIC due to node 7 connects ZINs
8 and 3.

In addition to reducing the total deployment cost attributed
to the minimized PMU numbers, researchers also attempt
to incorporate various practical contingencies into the OPP
model so as to enhance PMU-based measurement systems
[8], [26], [27], [28]. Two categories of contingencies, i.e.,
branch outage and PMU outage, are typically considered in
the existing literature. For example, PMU loss is considered
in [14], [29]. Single branch outages are considered in [30],
and a binary search algorithm and measurement redundancy
strategy are proposed to minimize the number of planned
PMUs. Authors in [27] further propose joint optimal placement
of PMU and flow measurements considering N-2 transmission
outages. Communication limitations can be considered as well,
such as [13], [28]. Researchers also investigate the topology
change and network reconfiguration, such as [31]. However,
most of the above literature overlooks the ZIC and redundancy
sharing property, which can help further reduce the number of
PMUs.

To conclude, representative OPP models in recent years
have been listed in Table I. Some characteristics are summa-
rized in the table. To bridge the gap, we propose a novel ILP-
based OPP model by leveraging full ZICs and observability
redundancy. The main contributions of this work are listed
below:

1) A novel full-ZIC model and scalable full-ZIC search
algorithm are proposed in this work. The full ZIC is
defined as a group of connected nodes those are either
ZINs or adjacent to ZIN. Specifically, the ZIC considers
nodes connected to one or multiple ZINs. The latter
scenario frequently occurs and can help reduce PMU
number. However, that is often ignored in the existing
literature. A question of finding clusters then naturally
arises. We design a dynamic adjacency matrix based
algorithm to systematically find all full ZICs, and show

that it has quadratic-time complexity. It could have wide
applications in many OPP works.

2) Necessary conditions for PMU redundancy sharing cou-
pled with ZIC are proposed for post-contingency observ-
ability. We show that a PMU can substitute any PMUs
within the full ZIC to solve observability equations
when redundancy-sharing conditions are met. Hence,
redundancy-sharing PMUs are employed to maintain
observability in N-1 contingency scenarios. A major dif-
ference from the existing literature is that the redundancy
within the ZIC can be shared with more nodes. The
proposed redundancy-sharing approach can effectively
reduce the number of redundant PMUs.

The paper is organized as follows. In Section II, we present
the basic optimal PMU placement model. Section III proposes
a novel full-ZIC-based OPP model and a scalable full-ZIC
search algorithm. The redundancy sharing techniques are pre-
sented in Section IV. We conduct case studies in Section V.
At last, Section VI concludes the paper.

II. BASIC OPTIMAL PMU PLACEMENT MODEL

Power system observability can be evaluated through nu-
merical and topological assessment approaches [5]. As numer-
ical assessment suffers from expensive matrix computation,
topological approaches are commonly used for observability
assessment. The power system achieves full observability if
all nodes are observable. A node in the network is identified
as observable if its voltage vector can be directly or indirectly
measured by PMU.

Case A—Directly measured node: If a node is installed
with a PMU, the nodal voltage and current vectors of lines
connected to it can be directly measured by PMU. We assume
the PMU has enough channels.

Case B—Indirectly measured node: Nodes adjacent to
directly measured nodes are referred to as indirectly measured
nodes. Given the voltage at one end of a line as well as the
line current and impedance, the other nodal voltage can be
attained following the Ohm’s Law.

The objective of a basic OPP model is to minimize the
number of PMUs to achieve full observability. The model can



TABLE I: A Summary of Some OPP Models*

Reference Year ZIN Effect Obi;?g/?::ny PLI:)/ISISJ Other Focus Solution Approach
A Graph Convolutional
. Lo Network-Based Deep
[32] 2024 X v v Channel limitation Deterministic Policy Gradient
Algorithm
Line outage; Communication Node-Level Data Pruning
(28] 2024 X v v bandwidth Algorithms
[33] 2024 X v v - Genetic Algorithm
[34] 2023 Basic ZIN Model X X Fixed 4PMU number; SCADA Mixed-integer Semidefinite
- measurements Programming
Pre-existing conventional . . S
[35] 2023 X X v measurements; Channel Mixed-integer Semldehnlte
limitati Programming
1mitation
. A Two-Archive Algorithm
[36] 2023 Basic ZIN Model v v B Based on Fuzzy Prediction
. Communication infrastructure; . .
[37] 2023 Basic ZIN Model X v Channel limitation Genetic Algorithm
. The existence of distributed . .
[38] 2023 Partial-ZIC Model v v generations Integer Linear Programming
. Observability propagation Mixed-Integer Linear
[39] 2022 Limited ZIN Effect v X depth Programming
L . o Integer Linear Programming;
[31] 2022 Usable Zero-Injection V4 X Unique dlstrlputlon network Genetic Algorithm:; Particle
Phase Model attributes Lo -
Swarm Optimization Algorithm
Channel limitation;
Full-ZIC Model in Pre-existing conventional Binary Interger Linear
(401 2021 Some Cases** X v measurements; Feedback Programming
control signals
[41] 2020 Partial-ZIC Model X v - Integer Linear Programming
[15] 2019 X v X Bus vulnerability Elitist Genetic Algorithm
[42] 2019 X X X Fixed PMU number A Greedy Algorithm
The sum of variance of the .
[43] 2019 X v X robust estimators Monte Carlo Experiments
[25] 2018 Partial-ZIC Model X v - Integer Linear Programming
. . An Opposition-Based Elitist
[44] 2018 Basic ZIN Model X X Line outage Binary Genetic Algorithm
. Pre-existing conventional . .
[29] 2015 Partial-ZIC Model X v measurements Integer Linear Programming
. Line outage; No PMU at . .
[13] 2010 Basic ZIN Model X v zero-injection bus Integer Linear Programming
[16] 2009 Partial-ZIC Model X X - Immunity Genetic Algorithm
[30] 2008 Basic ZIN Model X v - A Binary Search Algorithm
[19] 2008 Basic ZIN Model X X The depth of unobservability Integer Linear Programming
[14] 2008 Basic ZIN Model v v Phasing of PMU placement Integer Linear Programming
. Pre-existign conventional . .
[22] 2004 Partail-ZIC Model X X measurements Integer Linear Programming

* There is no report on algorithm to search ZIC or partial-ZIC in the literature.
** Observability conditions only work in some cases. One has to validate the solution post-optimization and heuristically adjusts results for large systems.

be formulated as follows:

N
(P1) min le ey
i=1
S.t. Zaijxj Z b],VZ (2)
J
z; € {0,1}, Vi

where the binary decision variable z; = 1 if a PMU is installed
at node ¢, and O otherwise. a;; is defined as

1 if node ¢ and j are connected or ¢ = j

3)

Q55 = .
0 otherwise.

In fact a;; is the element in the adjacent matrix. Constraint
(2) denotes that at least b; PMUs are connected to node 7 or

directly installed at 7. In other words, node ¢ is measured via
Case A or B methods. The parameter b; can be set to 1 or
another positive integer in practice.

III. FULL ZERO-INJECTION CLUSTER

In the ZIN literature, the basic idea is to establish one
equation based on Kirhhoff’s Current Law (KCL) for ZIN,
which often helps reduce one PMU. In contrast, ZIC-based
model considers a set of ZINs together, reducing even more
PMUs than ZIN. The full ZIC defined in this work can cover
more than 50% nodes in many cases. In this section, we
first present a novel full-ZIC OPP model, and then propose
a scalable full-ZIC search algorithm.



(a) full ZIC with single ZIN

Fig. 2: Two illustrative examples of ZIC. (a) Node 3 is ZIN,
and the ZIC includes nodes 2-4 and 7. (b) Nodes 3, 4, and 8
are ZIN, and the ZIC includes nodes 2-5, 7-9, and 11.

(b) full ZIC with multiple ZINs

A. Definition and Observability of Full ZIC

The full ZIC is defined as a set of connected nodes that
include at least one ZIN, and all nodes are either ZIN or
adjacent to ZIN. For example, Fig. 2 presents two typical ZICs.
Fig. 2 (a) has one ZIN, i.e., Node 3, and the ZIC includes
nodes 2, 3, 6, and 7. Fig. 2 (b) has three ZINs, i.e., nodes 3,
4, and 8. We call nodes in ZIC Case C type.

Next, we show how to model the full ZIC in the OPP
scheme. Assume line impedance is known. Let k be the cluster
index and Cj be the set of all nodes in ZIC k, and &}, be the
set of edges connecting nodes in Cy. Let Z;, be ZIN set in the
cluster k£, we have

Y Ly =0VieI, Q)
JjEA;

where V; is the voltage of node i, I;; is the current in line ¢j
and Z;; denotes the impedance of line ij. Equation (4) stands
for the voltage drop. Equation (5) follows KCL. Regarding the
equation number, we establish the following proposition.

Proposition 1: For ZIC k, the total number of equations for
(4) and (5) is 2|&| + 2|Zk]|, and

2|Ek| + 2|Tk| > 2|Ck| + 2|Tk| — 2, (6)

where | - | denotes the number of elements in a set.

It is noted that voltage and current are complex numbers.
The number of known values required for solving all the
2|&k| + 2|Z)| state variables depends on the number of in-
dependent equations of (4) and (5).

Proposition 2: If ZIC only has one ZIN and all nodes
adjacent to it are observable, then only ZIN is observable
according to equations (4) and (5).

Proposition 2 is often applied in the existing ZIN literature
[22], [15], [31].

Let ¢; be the indicator whether the KCL equation generated

from ZIN ¢ is independent of the voltage equations, i.e.,

b = 0 ¢ and neighboring nodes are Case A/B 7
"1 otherwise

For ZIC observability, we have following proposition.

Proposition 3: Let z; be the indicator of whether node 7 is
Case A or B observable, i.e.
. N
le{l 1fzj:1a¢jzj21. (8)

0 otherwise

Then, all nodes in Cj, are observable as long as

ZZiZWH— th. ©)]

1€Cy, JELy

As there are 2|E| + 23,7 t; independent equations, we
need at least 2|Cy| —2 ),z t; known values to solve all the
equations following (4) and (5).

Case C—ZIC node: All Case C type nodes within ZIC &
are observable when inequality (9) is met. Nodal voltage and
line currents can be attained by solving a group of independent
linear equations (4)(5). For example, we can establish six KCL
equations together by leveraging three ZINs in Fig. 2 (b). In
this case, Node 7 is counted only once. In contrast, Node 7 is
counted twice in partial-ZIC models according to Fig. 1 (b).
How it can reduce PMU number will be illustrated soon in
Fig. 3.

According to Proposition 3, we formulate a new OPP model
as follows:

N
(P2) min )
i=1

st Y ar; =1, i€ N\C (10)
J
s+ Y tp=lClkek (11)
1€Ck JELy
N
MZZ' Z Zaijxi,Vi c C (12)
j=1
N
2 < Zaijx,-,Vi eC (13)
j=1
ti <Y ai(l—z),Viel (14)
J
Mt; > a;(1-2), Vi€l (15)

.’Ei,Zi,ti S {0,1}, Vl,

where /C is the set of cluster indices, and C = UgexcCg, Z =
UkexZr, and M can be set to max Zj\;l a;;. The constraint
(10) is enforced for nodes not within any ZICs, and constraint
(11) from Proposition 3 is enforced for ZIC k. Compared with
(P1), model (P2) often requires less PMUs to observe nodes
in ZIC.

B. Full-ZIC Search Algorithm

Given the system topology and ZIN locations, a search
algorithm for full ZIC is proposed in this section, as illustrated
in Algorithm 1. The proposed algorithm groups nodes into full
ZICs based on dynamic adjacency matrix.

It first extracts the row vectors corresponding to ZINs from
A and forms a submatrix A. Each row vector of A represents a



cluster with at least one ZIN. A,; = 1 means node j is within
cluster i. If the sum of the jth column of A is greater than
one, node j is within multiple clusters. Nodes in these clusters
can be grouped into a larger ZIC, so we conduct logical OR
operation on row vectors {A,-Mij > 0} in Line 7. Therefore,
a new ZIC is attained. We then modify A by replacing the
first row vector in {A;|A;; > 0} with the newly formed one
and setting the rest vectors in {A |A,J > 0} as zero vectors.
This process is repeated until all full ZICs are found, i.e.
U122 Ay 22} =

It can be observed that the computation burden is mainly
from the first loop, i.e. line 4-13. The time complexity for
this loop is no more than O(|Z||N|). Therefore, the proposed
algorithm has square-time complexity.

Algorithm 1 Full-ZIC Search Algorithm

Input: adjacency matrix A, ZIN set 7
Output: ZICs

1: Initialize A £ (aij)iz|xn, Vi € T,Vj € [1, N].
2: Initialize 7 = {j| Z‘ill A > 2.
3: Initialize U = ¢.

4: while 7 # ¢ do

50 U<+ {Z‘Aﬂ] > 0}.

6: for j=1:|N|do

7 Aulj — \/iGZ/{Aij'

8: end for

9: fori=2:|U|do

10: Aui — [0,0,...,O]lxw\/‘

11:  end for

120 T« (I A > 2.
13: end while

14: k=1.

15: for i =1:|Z| do

16:  if {]|Alj > 0} # ¢ then
17: Cr 2 {j|Ai; > 0}.

18: k<+ k+1.

19:  end if

20: end for

21: return C

IV. REDUNDANCY SHARING

Another advantage of the full ZIC is that PMU observability
can be shared over a larger area. The power system security is
typically evaluated by the N-1 safety criterion, which requires
the system to maintain stable operation even if one component
is disconnected due to contingency. To avoid failing the N-1
security rule, redundancy is often maintained in the system.
Placing two PMUs at each node can guarantee full topological
observability in post-contingency. However, it is not practically
viable due to the PMU deployment cost or space constraint.
Inspired by the N-1 contingency rule, we propose using the
minimum PMUs to maintain full observability under PMU
contingency.

A. Redundancy Sharing

Proposition 4: With single PMU contingency, to maintain
the observability of a ZIC, the following necessary condition

must be met:
D0 aiay > 2(Ck| — 2[Zil,

i€Cr J

(16)

and (9) hold. It is called n — 1 redundancy sharing.
Considering that only ZINs adjacent to each other share
redundancy, equation (16) can also be written as follows:

DY aia; > 2(Ch| - 2|

i€Cy J

a7

where C is composed of adjacent ZINs and their neighboring
nodes, and Z’ is composed of adjacent ZINs.

In the previous sections, Zj a;jx; is used to evaluate if
the node i is observable. In fact, the value of ). ai;z;
also represents how robust the observability is. For example,
the node would lose observability in N-1 post-contingency if
> jijT; = 1. In contrast, the node is still observable with one
PMU contingency if »_ ; @ijzj > 2. Therefore, we introduce
variables ¢; and 7 to denote the observability degrees of node
1 and ZIC k, respectively. The constraints are formulated as

Zaijxj > ¢, 1 € N\C (18)
J

Soa+ Y >l +m, kek (19)

1€Cy JELk

where ¢; and 7 can be set 1. Equation (18) denotes the
observability degree for regular nodes, and (19) represents the
observability for the ZIC.

B. Redundancy Sharing Assisted n-1 Contingency Model

With Proposition 4, a two-step method is developed for
maintaining the system’s observability with one PMU contin-
gency. In the first step, (P3) is solved for screening all solutions
satisfying necessary conditions. In the second step, a necessary
and sufficient solution is generated from optimal solutions to
(P3).

N
min} @
* i=1
s.t.Zaijxj Z 2,2 GN\C

J
DO aim; > 2(C;| - 2T

ieC, J
(9)(12)(13)(14)(15)
x; € {0,1,2},Vi

(20)

In model (P3), integer variable ; = 2 means two PMUs
are placed at node ¢. As a side note, the feasibility region
of z; can be changed depending on the space limit or other
constraints, and the proposed technology still apply.

This two-step method is implemented by Algorithm 2.
Apparently, the best solution is either included in the optimal
solutions of (P3) or inferior to the optimal solutions of



(P3). Hence, Algorithm 2 first solves (P3) then verifies the
optimal solutions one by one. We only check the cases when
PMUs used for Case C nodes are lost. The post-contingency
observability of nodes outside ZIC is guaranteed by equation
(20). If the solution being checked guarantees the system’s
post-contingency observability (i.e., the sufficient condition is
met), it is an optimal solution. If the solution being checked is
not sufficient, extra PMUs are added till it becomes sufficient,
and the modified solution is compared with the current best
one in terms of PMU number. Finally, Algorithm 2 returns a
necessary and sufficient solution with minimum PMUs.

Algorithm 2 OPP considering one PMU contingency

Input: adjacent matrix A, zero-injection clusters ZICs.
Output: PMU locations Pyes; with the minimum number of
PMUs.

1: Solve (P3) and record all the optimal solutions as P; =
{pi1, pi2y -y Dim}, Vi € [1,k] where k is the number of
solutions and p;; represents the location of the jth PMU
in P;. .
for each i € [1,k] do

Empty Pextra-

for each j € [1,m] do

if p;; observes Case C nodes then
Pl < P\ {pi;}
Check observability for PMU deployment P.
if not observable then
Pemtra — Pe:r:tra U {pm}
end if
end if
12 end for
13:  if i =1 then

R AR A

—_ =
—= o

14: Pyest <+ P U Pegira-

15:  end if

16:  if P.y4rq = ¢ then

17: Ppest <+ P;

18: Break.

19:  else if |Peyira| + |P;| < |Ppest| then
20: Pyest < P U Pegira-

21:  end if

22: end for

23: return Py

C. Practical Applications

In the OPP problem, there are often multiple optimal
solutions, which can lead to different observability degrees for
normal and/or post-contingency cases. The concept of redun-
dancy sharing can be employed to enhance the observability
robustness. We present a two-stage approach as an example.

N
D i
i=1

(P4 ¢ =min
st. ¢ >1,ie N\C 1)
m>1, ke (22)

(9). (18), (19)
z; €{0,1}, Vi.

(P5)

max
z,m,¢

Z ¢H—Z7Tk

iEN\C kek

N
s.t. sz <o
i=1

(9),(18), (19), (21), (22)
z; € {0,1}, Vi.

(23)

By solving problems (P4) and (P5) sequentially, we can find
the solution with maximum observability with respect to the
same number of PMU deployments.

In the aforementioned parts, the objective is to minimize
the PMU number for full observability. In reality, the objec-
tive function can also be modified to represent PMU cost
considering channels. The full observability sometimes may
not be reached with budget constraints. In these cases, we
can maximize the observability degree given budget cost
constraints.

V. CASE STUDY

We conduct comprehensive simulations with different sys-
tems: 1) Distribution systems: IEEE 34-node, IEEE 37-node,
IEEE 69-node and IEEE 123-node test feeders. 2) Transmis-
sion systems: IEEE 30-bus, IEEE 39-bus, IEEE 118-bus and
IEEE 300-bus systems. 3) Large scale systems: 1354-bus and
2383-bus systems. 4) Real-world system: a distribution feeder
in City of Suqgian, China. It is assumed that the installation
costs of the PMU on all nodes are the same. The simulations
are conducted with Matlab and Gurobi using Intel Core (TM)
i7-1165G7@2.8GHz.

A. Normal Operating Case

1) Simulation Results: Table II displays the simulation
results of the proposed OPP model. The efficiency of the pro-
posed method is verified by the fact that the optimal solutions
of all IEEE systems can be obtained within 2 seconds, and it
takes less than 90 seconds to solve the models for 1354 and
2383 systems.

The number of optimal solutions is also listed in Table II,
which increases nonlinearly with the scale of the network.
These solutions require the same number of PMUs but have
different observability degrees.

2) Effectiveness analysis of full ZIC: Table III displays
the distribution and composition of zero-injection clusters in
different systems. We have two observations. First, a full ZIC
can cover many ZINs. For example, the 6th row shows that all
six ZINs are modeled into one ZIC in IEEE 30-bus system,
simplifying the utilization of ZIN. Second, the full ZICs cover
more than 50% nodes in most systems. As shown in the last
row, 1375 out of 2383 nodes, i.e., 57.7%, are covered in the
full ZICs in the 2383-bus system.

The last column “Search time” in Table III shows the time
to find all ZICs by the proposed full-ZIC search algorithm. It
can be observed that all full ZICs can be found within 0.004 s
for systems with less than 300 nodes. The last row shows that



TABLE II: PMU Placement with full ZICs considered

| No.of PMU location - Computational No. of
IEEE Systems PMUs (one of all optimal solutions) Observability time (s) optimal solutions
34-node 11 802;808;820;824:834:838;840;846;854;864;890 complete 0.0328 180
37-node 9 701;705;707;709;710;711;714;727;735 complete 0.0626 36
69-node 18 6;9;14;18;22;26;28;34,38;40;44,50;53,55;57,62;64;68 complete 0.0553 > 103
1;5:14;15;19;23;29;31,38;42;45;47;50;52;55;58;63;65;
123-node 32 68:70:74:77:82;84;87:93:95:99:103;106:109:113 complete 0.0328 !
30-bus 7 1;5;10;12;18;24;27 complete 0.0789 110
39-bus sys 8 3:8:10;16;20;23;25;29 complete 0.0983 52
3;12;15;17;21;25;28;35;40;43:;49;53,56;62;69;72;75,77, 3
118-bus 27 80-85-86:00-94:101:105:110:114 complete 0.1228 > 10
3;11;15;22;26;35;39;41;42;47;51;55;58;64;79;86;88;93;98;101;
300-bus 47 105;116;118;134;154;157;162;167;168;170;183;190;196;200; complete 1.0120 1
210;211;214;224;227;238;267;268;269;275;278;294,297
1354-bus 153 - complete 71.5990 > 103
2383-bus 509 - complete 85.7313 > 103

TABLE III: Full ZICs in different systems (ZINs in the same ZIC are listed in the same square bracket.)

IEEE Systems I\;‘;sz l\é‘ﬁf N°i'n°£f‘c°sde“ ZINs in each ZIC Search time (s)
34-node 3 2 10 [812,814,850];[852,888] 0.0014
37-node 11 3 31 [702,703,704,705,706,707,708,7001;[710,736];[711] 0.0006
69-node 20 9 P [2,3.4,5,361:[151;(191; [23,251:[30,31,321; [45,46,47,49T;[521; [611; [65,67] 0.0007

[31:8,13,14,15,18,21,23,25,26,271;(301;136,40,44, 1351 [5 1,151 :[54,57,601;
123-node 36 12 92 [67,72,97,1601;[78,811;(89,91,931;[100]:[101,105,108,110];[152] 0.0039
30-bus 6 T 7 [6,9,22,25,27,28] 0.0021
39-bus 2 3 31 [1,2,5,6,9,10,11,13,14%;[17,197;[22] 0.0008
T18-bus 10 2 35 [5.9,30,37,38,63,64,68,811;[71] 0.0005
300-bus 109 20 213 — 0.0023
1354-bus 681 32 1156 _ 04741
2383-bus 557 71 1375 _ 0.5303
TABLE 1IV: Effect of full ZICs . .
No. of PMUs BN 3 & o
. s . ——e—o | ———0—o .
IEEE Systems WO ZIC T W ZIC Reduction ! | | i
34-node 2 1 1 i | | !
37-node 12 9 3 ! o @ ! | il !
69-node 24 18 3 : ! !
123-node 47 32 15 i s | o ! “ 1o
30-bus 10 7 3 L 89 ! S
39-bus 13 8 5 : ! !
118-bus 31 27 4 i ! ' :
300-bus 87 a7 20 e : | j
1354-bus 397 153 2.
2383-bus 746 509 237

all 71 ZICs can be found in 0.5303 s for the 2383-bus system.
It shows the scalability of the proposed search algorithm.

The effect of ZIC is shown in Table IV, where the numbers
of PMUs with and without ZIC are compared. The comparison
shows that the number of PMUs required to achieve complete
observability of networks can be reduced when considering
ZIC. And the advantage increases with the number of ZINs in
the system. Fig.3a shows an example of how ZIC reduces the
number of PMUs in the normal case scenario. Nodes 80 and
79 are observed via solving equations (24)(25) sequentially.
Without ZIC, node 79 will be mathematically considered
unobservable since node 80 is not directly measured by any
PMU.

Vso — Va1 = Iz0,81 250,81

24
Igo,81 + Iga,81 + Ig2.81 = 0

(a) PMU placement in nor-
mal case

(b) PMU placement consid-
ering single PMU loss

Fig. 3: Partial simulation results of IEEE 123-node system.
Nodes 78, 81 are ZIN (red dots). (a) PMUs are installed at
nodes 77, 82 and 85 (blue dots). (b) PMUs are installed at
nodes 77, 78, 82, 84 and 85 (blue dots).

Vizg — Vag = I79,78 279,78
Vso — Vzs = Ig0,78 230,78 (25)

I79.78 + Igo, 78 + I7778 = 0

3) Comparison with Peer Works: The proposed method is
compared with other works considering zero-injection nodes.
Brief introductions are listed below.

¢ [32]: A deep reinforcement learning-based method. The

ZIN effect is not considered.

e [3]: A mixed-integer linear programming model that

adopts the basic ZIN model.



e [36]: A Multiobjective intelligent decision -making
method that adopts the basic ZIN model.

o [38]:A graph theory based method that considers the
adjacent ZINs, i.e., partial ZIC.

e [25]: An integer linear programming model that considers
the adjacent ZINs, i.e., partial ZIC.

e [41]: An integer linear programming method that consid-
ers adjacent ZINs, i.e., partial ZIC.

o [29]: An integer linear programming model that considers
the effect of adjacent ZINs, i.e., partial ZIC.

e [32]: A deep reinforcement learning based method that
adopts the basic ZIN model.

e [40]: An integer linear programming model based on a
full-ZIC model that only work in some cases.

Table V shows the comparison results. According to the
simulation results, two conclusions can be drawn. First, the
effect of ZIN can reduce the number of PMUs required for
full observability. For instance, the number of PMUs obtained
by [32] is 9 for IEEE 30-bus system, whereas only 7 PMUs
are required as reported by [41] and [29]. Second, the full
ZIC model proposed in this paper requires less PMUs than
the partial-ZIC models. In the IEEE 118-bus system, there are
no adjacent ZINs, and thus partial ZIC in the literature loses
efficacy. In contrast, as shown in Column ”ZINs in each ZIC”
Table III, nine out of ten ZINs in the IEEE 118-bus system can
be covered in the full ZIC. Therefore, the proposed method
requires 27 PMUs while all other methods require 28 PMUs.

B. Single PMU Contingency Scenario

1) Simulation Results: Table VI lists the minimum number
and PMU locations for the test systems while considering
single PMU contingencies. It is observed that considering
PMU loss leads to an increase in the number of PMUs
in comparison with the normal case. Solutions in Table VI
ensure that no matter which PMU is lost, the systems are still
observable.

2) Comparison with Peer Works: The results of the pro-
posed method are compared with peer works in terms of
the number of PMUs. As shown in Table VII, the proposed
method requires the minimum number of PMUs for each
of the systems. Compared with [45] and [13], the proposed
method requires less PMUs even without redundancy sharing.
Methods proposed in [29] and [41] also consider the effect
of zero injection in one PMU contingency. The two models
ensure the optimality of the solutions by enumerating all
situations. However, the enumeration is realized by modifying
the adjacency matrices, which does not allow 2 PMUs to be
placed at the same node. Therefore, the simulation results of
[29] and [41] have more PMUs compared with the proposed
method.

3) Effectiveness Analysis of Redundancy Sharing: As
shown in Table VIII, the number of PMUs required for post-
contingency observability can be minimized when redundancy
sharing is considered. The reason is that the effect of zero-
injection is exploited in both normal case and the case of
one PMU loss. Besides, the proposed method allows multiple
PMUs deployed on one node. Restricting the number of PMUs

on each node will lead to an increase in PMU numbers. The
indices of nodes with two PMUs installed are listed twice in
Table VI

Fig. 3b shows how the redundancy is shared when PMU
contingency occurs. In Fig. 3b, two additional PMUs are
placed on nodes 78 and 84 so that the ZIC remains observable
no matter which PMU is lost. All nodes in Fig. 3b can be
directly measured by PMUs in normal conditions. When PMU
loss occurs at node 82, the KCL equation in 24 can be utilized
for observing node 82. When PMU loss occurs at node 78,
nodes 79 and 80 can be observed by equations (24)(25), and
node 78 can be directly measured by the PMU installed on
node 77.

4) Efficiency Analysis of Algorithm 2: The efficiency of
the proposed two-step method is analyzed in Table IX. The
original search space of a system with /N nodes is composed
of 3V solutions. In the first step, necessary solutions with
minimum PMUs are screened out, forming the search space
of the second step. It can be noticed that with the aid of
Proposition 4, the search space of the heuristic process can
be significantly reduced. In the second step, the necessary and
sufficient solutions of IEEE 69-node and IEEE 30-bus systems
are found from the optimal solutions in the first step. Thus, the
optimality of these two solutions can be guaranteed. Notably,
the solving process of the two systems terminated before all
the solutions are tested, minimizing the searching process as
much as possible. For other systems, i.e. IEEE 34-node, IEEE
37-node, IEEE 123-node, IEEE 118-bus, IEEE 39-bus, IEEE
300-bus, 1354-bus, and 2383-bus systems, the final solutions
are generated by modifying the optimal solutions in the first
step. Although the optimality of these solutions cannot be
guaranteed, the algorithm returns the solution that is closest to
the lower bound of the number of PMUs among the explored
solutions. To further determine the minimum PMU number for
these systems, all the optimal solutions to (P3) are explored.

The complexity of (P3) is compared with peer works as
shown in Table X. For a system with N nodes, the proposed
integer linear programming model requires no more than
3N key variables, including N logical variables determining
whether the corresponding nodes need PMUs to be placed,
N integer variables deciding the numbers of PMUs to be
placed at the corresponding nodes and K logical variables
for redundancy sharing, where K equals to the number of
ZICs. The decision variables required for the proposed method
and method in [29] have the same order of magnitude, which
is O(N). But the method proposed in [41] requires O(N?3)
variables. In terms of the number of constraints, the proposed
model requires the least number of constraints among these
methods. The order of magnitude of our method and other
methods are O(N) and O(N?), respectively. On the one hand,
models with large amounts of variables and constraints may
take a long time to solve and a large storage space. On the
other hand, numerical problems are unavoidable for large-scale
models, especially for non-convex ones. According to our
experience, for large-scale systems like 1354 and 2383 -bus
systems, the optimal solutions are sensitive to the parameter
settings of the solver.

The computational time of the second step can be found



TABLE V: Comparison of numbers of PMUs between different methods in normal case

IEEE Systems
Method ZIN Model Toode | 3T ode | 69mods | T23mode | 30bus— T 39-bus T TT8Bus | 300bus | 1354605 T 238355
37] - - - - - 9 - Ep) - - -
[36] Basic ZIN Model - - - - - 8 28 - - 593
[3] Basic ZIN Model - - - - 7 - 28 - - -
[38] Partial-ZIC Model ] - 8 EY) - - - - - -
[25] Partial-ZIC Model - - - - 7 8 28 - - -
1] Partial-ZIC Model T 0 8 37 7 g 73 53 196 535
[29] Partial-ZIC Model T 10 8 33 7 g 73 53 196 535
321 Partial-ZIC Model - - - - - 9 Ep) - - 562
Full-ZIC Model
[40] in Some Cases B B - B 8 28 B B B
Proposed | Full-ZIC Model ¥ 9 18 2 7 8 77 7 153 509

TABLE VI: PMU placement considering single PMU loss

IEEE Systems | No. of PMUs PMU location Post contingency
observability
801;802;808;810;818;820,822;824;826,828;832;834,836;838,840;844;846,848;854;856,828;
34-node 22 862:864:388 complete
37-node 20 701;705;706;707;707;709;710;710;711;714;718;720;728;729;730;734;737;740;742;744;799 complete
69-node 36 3;6;7;9;11;13;14;16;18;19;21;22;24;26;27;32;34;35;38;39;40;41;42;44,48;49;51,53;54;55; complete
56;57:,58;60;62;63;65;68;69
1;2;5;6;8:9;14;15;19;20;28;30;31;32;34;36;38;39;40;42;43;45;46;47;48;50,52;55;56;58;59;62;63;
123-node 64 65;66;68;70,71;74;75;76;77;78,82;83;84;85;87;88;91,95;96;98;100;103;104;106;107;108;109;111; complete
113;114;116
30-bus 14 2:3;4,7:10;12;13;15;17;19;20;24,27,27 complete
39-bus 17 2:5:6,7:8;16;17;20;21;23;25;26;29;34,36;37,38 complete
2:3;6;8;9;11;12;15;17;19;20;21;23;27;28;29;32;34;35;40;41;43;45;48,49;50;51,52;
118-bus 55 53;56;59;62;66;70;71;71;75;77,80;84;85;86;87;89;90;92;94;96;100;101;105;106; complete
109;110;111;112;115;117;118
3;11;15;19;22;23;25;35;42,47;51;55;57,60;64;79;86,88;92;93;98;101;103;105;113;116;
118;119;122;132;133;134;138;141;152;157;160;167;170;172;175;177;179;183;194;
300-bus 115 200;209;210;211;214;222;224,228;237,267;268;269;274;276;277,294;299;3;11;15; complete
19;35;42:47;51,55;60;64;79;86;88;92;93;98;113;116;133;152;157;170;177;194;200;
210;211;214;237;268;269;274;294;19;51;57,60;79;92;101;103;105;113;119;132;138,;
141;179;194;224,;267;276
1354-bus 494 - complete
2383-bus 1601 - complete

TABLE VII: Comparison of the proposed method and other
methods considering single PMU loss

IEEE Systems
Methods |3 T 30 T 39 TS
node | node | node | node bus bus bus
[29] 24 21 37 75 14 17 61
[45] - - - - 16 - 64
[13] - - - - 15 18 63
[41] 24 21 37 75 14 17 61
[35] - - - - 21 - 66
[38] - - 44 66 - - -
[40] - - - - 14 17 61
Proposed | 22 20 36 64 14 17 55
TABLE VIII: Effect of redundancy sharing
No. of PMUs .
IEEE Systems W.O. redundancy | W. redundancy Reduction
sharing sharing
34-node 26 22 4
37-node 24 20 4
69-node 48 36 12
123-node 86 64 22
30-bus 14 14 0
39-bus 21 17 4
118-bus 62 55 7
300-bus 127 115 12
1354-bus 713 494 208
2383-bus 1783 1601 182

in Table IX. Factors affecting the computational time include
the number of explored solutions and the scale of the system.
For systems with less than 10 solutions to be explored, i.e.,
IEEE 69-node, IEEE 123-node, IEEE 30-bus, and IEEE 39-
bus systems, the heuristic process terminates within 1 second.
Among the systems with many solutions to be tested, smaller
systems, i.e. IEEE 34-node and IEEE 37-node systems, have
simulation times shorter than 10 seconds, while larger systems,
i.e. IEEE 300-bus, 1354-bus, and 2383-bus systems, require
computing times longer than 2000 seconds.

C. A Real-world Case

We apply the proposed techniques for a real-world PMU
deployment project in Sugqian, Jiangsu Province, China. The
system one-line diagram is shown in Figure 4. To achieve
the complete observability, at least eight PMUs should be de-
ployed at proper locations. However, PMU deployment num-
ber is limited to three due to the budget and space constraints.
Therefore, we establish a two-stage approach to maximizing
the observability degree with the number constraints.

In the first stage, the number of Cases A and B nodes is
maximized with the PMU number limit constraint. Together
with constraints (9) (12)(13)(14)(15), the OPP program finds
at most 11 Cases A and B nodes. In the meantime, we find



TABLE IX: Efficiency analysis of redundancy sharing

IEEE Systems | original search space | No. of solutions in stage 1 | No. of explored solutions in stage 2 | computational time in stage 2 (s)
34-node 1386 1386 0.0090
37-node 186 186 0.0244
69-node 61282 3 0.0673
123-node 1 1 0.2908
30-bus 3N 2134 3 0.0057
39-bus 9 9 0.0122
300-bus 228 228 1.4280
1354-bus 20 20 2355.2361
2383-bus 27 27 8729.6659

TABLE X: Comparison of complexity between the proposed
method and other methods

method No. of decision variables | No. of constraints
proposed O(N) O(N)
[41] O(N?) O(N?)
[29] O(N) O(N?)
21 22 23 24 25 26
FFFFF-
28 A 9 14 18
A g
FEFEFFEFRL
|19 12 10 1 13 156 16 17
- - -
27 29 30

Fig. 4: A Real-world Distribution Feeder in Suqgian, China

there are 16 solutions that have the same objective value. We
thus formulate the second stage problem by maximizing the
observability degree with 11 Cases A and B nodes constraints.
The maximum observability degree is 12. Three PMUs are
deployed at nodes 10, 13, and 20. The 11 observable nodes
include 9-15, 19, 20, 27, and 28.

VI. CONCLUSION

In this paper, a concept of full ZIC is proposed for lever-
aging neighboring zero-injection nodes, which integrates the
phenomena of direct and indirect adjacency of ZINs, as well
as the phenomenon of multiple ZIN adjacency. A scalable
algorithm to search all full ZICs is proposed. This paper
also introduces the necessary conditions for PMU redundancy
sharing in ZIC. Based on that, a two-step method is designed
to maintain full observability in N-1 contingency scenarios.
Notably, the established objective functions and constraints are
modeled linearly, so that the OPP models can be solved using
ILP solver.

Comprehensive simulations are conducted with the pro-
posed method under both normal and contingency case scenar-
ios. The case study shows that utilization of full ZIC can re-
duce the PMU number for most test systems. The redundancy-
sharing method helps reduce the number of PMUs needed
for maintaining complete observability in N-1 scenarios. As
compared with peer works in the literature, the proposed meth-
ods achieve the minimum number of PMUs. In addition, the

successful application of the proposed method on a real-world
distribution feeder in China verifies its practicality. Network
topology and line impedance are needed for the application of
proposed techniques. One can also tailor the cost coefficients
when considering the PMU channels. In conclusion, this paper
provides a basic tool, which helps reduce PMU number.
The techniques could have wide applications in many OPP
approaches. In future study, authors plan to apply them in
more complicated OPP models.
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