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Abstract—Accurate load forecasting is fundamental for power
system operation and planning. While traditional single-region
approaches are constrained by limited local data, cross-regional
forecasting leverages larger datasets to achieve higher accuracy.
Federated learning (FL) emerges as a promising solution, en-
abling cross-regional collaboration. However, existing FL-based
approaches struggle with model, system, and statistical hetero-
geneity, along with security vulnerabilities. To address these
issues, this paper proposes a robustness-enhanced personalized
federated learning framework that integrates knowledge distilla-
tion for cross-regional load forecasting. Proxy models are utilized
to enable secure knowledge transfer while preserving local model
adaptability, thereby resolving model heterogeneity. Perturbed
Gradient Descent (PGD) mitigates statistical heterogeneity, and a
dynamic exit mechanism reduces computational costs by allowing
clients to exit early upon meeting accuracy thresholds, addressing
system heterogeneity. Case studies on open-access energy dataset
from six European countries show that the proposed method
outperforms conventional FL. models, personalized FL methods,
and traditional robust aggregation schemes in terms of accuracy,
robustness, and model resilience.

Index Terms—Federated Learning, Knowledge Distillation,
Cross-Regional Load Forecasting, Model Robustness.

I. INTRODUCTION

S the global energy sector transitions towards distributed,
diversified, and sustainable energy sources, efficient en-
ergy management has become a cornerstone of achieving
energy security. The growing integration of renewable sources,
such as solar and wind, introduces additional complexity
to load forecasting due to their inherent intermittency and
variability [1]. Accurate load forecasting is therefore indis-
pensable for optimizing energy resource distribution, ensur-
ing grid reliability under varying demand conditions, and
reducing operational expenditures attributed to generation and
reserve acquisition costs [2]. In this context, cross-regional
load forecasting has garnered considerable research attention
due to its critical role in the planning, operation, and energy
management of distributed power systems [3].
With the increasing integration of distributed energy re-
sources, traditional load forecasting methods struggle to con-
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struct accurate load models due to the numerous complex fac-
tors influencing electricity consumption. Fortunately, the rise
of artificial intelligence (AI) has shifted the focus toward data-
driven approaches, making Al the primary research method for
load forecasting. Moreover, advancements in intelligent energy
measurement devices and communication technologies have
led to the accumulation of vast amounts of data, including
power load records, meteorological conditions, and geographic
information, which serve as a foundation for leveraging Al,
big data analysis, and other advanced technologies in load
forecasting [4]. Traditional machine learning techniques, such
as artificial neural networks [5], [6], support vector machines
[7], random forests [8], and ensemble learning [9], [10], have
been widely applied. More recently, deep learning has demon-
strated superior performance by extracting hidden patterns
through multi-layer nonlinear mappings, significantly improv-
ing prediction accuracy. Deep learning techniques, such as
LSTM networks for short-term load forecasting [11], industry
correlation models for medium-long term forecasting [12],
multi-source parameter coupling using LSTM [13], multi-
view neural networks for forecasting [14], and Deep Belief
Networks for short-term forecasting [15], have demonstrated
significant improvements in prediction accuracy.

Despite the advancements mentioned above, most existing
load forecasting models are typically trained in isolation for
specific regions managed by Regional Transmission Orga-
nizations, often overlooking the potential benefits of valu-
able supplementary datasets from other regions [16]. More-
over, issues with data acquisition—such as sensor failures or
communication disruptions—can introduce noise and missing
samples, leading to data corruption in model training. This
few-shot problem in data-driven load forecasting inevitably
results in inaccurate predictions. A natural solution would
be integrating data from multiple regions to improve model
integrity and robustness. FL, a specialized distributed machine
learning framework, addresses this challenge by enabling
multiple clients to collaboratively train models without re-
quiring centralized data aggregation. This approach has shown
promising results in multiple Al applications in power systems
[17], [18]. By leveraging model coordination and adaptive
aggregation strategies, FL supports knowledge sharing across
regions while maintaining the autonomy of local datasets.
By expanding the sample space accessible to each client,
FL advances model performance and demonstrates significant
potential for advancing cross-regional load forecasting.

While Federated Learning (FL) introduces a decentralized
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paradigm that improves system resilience by distributing the
training process across multiple clients, it also exposes the
learning process to new vulnerabilities—particularly from
Byzantine clients, which may transmit incorrect or even ma-
licious updates due to faults or adversarial behavior. This
poses a significant threat to the robustness and reliability
of FL-based systems, especially in safety-critical applications
such as power system forecasting. The challenge is further
complicated by the data heterogeneity inherent in FL, where
client data distributions vary widely, making it difficult to dis-
tinguish truly malicious updates from legitimate but divergent
ones [19]. Among various threat models, Byzantine attacks
are considered the most destructive due to their arbitrary
and unpredictable nature. Prior studies have shown that even
a small number of Byzantine clients can effectively under-
mine robust aggregation mechanisms like Krum and Trimmed
Mean, causing severe degradation in model performance [20]-
[22]. Therefore, defending against Byzantine behaviors is
essential not only for ensuring fairness and accuracy, but also
for enhancing the fault tolerance and overall resilience of
federated load forecasting systems.

Beyond adversarial threats, FL also faces cross-regional
heterogeneity challenges, which manifest in three key aspects:
model heterogeneity, due to differences in data formats and
structures; system heterogeneity, caused by variations in com-
putational resources and infrastructure; and statistical hetero-
geneity, stemming from Non-Independent and Identically Dis-
tributed (Non-IID) data distributions [23], [24]. These factors
often lead to degraded performance or unstable convergence
when training a single global model. As highlighted in [25],
global models may fail to provide uniformly good performance
across all clients, and in some cases, clients may derive no
benefit from participating in FL at all [26].

To address such limitations, personalized federated learning
(PFL) has emerged as a promising solution. PFL aims to
tailor global training outcomes to the specific characteristics of
each client, thus mitigating the impact of heterogeneity. Prior
studies have proposed various approaches for personalization,
including client clustering based on similarity [27], transfer
learning via fine-tuning on local data [28], and relevance-based
sample selection [29]. Recently, knowledge distillation has
attracted increasing attention in the PFL context. By treating
the global model as a teacher and client-specific models as stu-
dents, knowledge can be transferred without direct parameter
sharing [30]. Distillation-based methods such as FedMD [31]
and its extensions [32] show promising flexibility in handling
architectural diversity and protecting privacy. However, despite
these advantages, the use of knowledge distillation for improv-
ing robustness against Byzantine threats has received limited
attention. Moreover, existing personalized FL frameworks tend
to focus narrowly on statistical heterogeneity, without ade-
quately addressing the combined impact of model diversity
and system-level disparities—both of which are prevalent in
real-world FL applications.

To address these challenges particularly the underexplored
issues of robustness and multi-dimensional heterogeneity this
paper proposes a robustness-enhanced personalized federated
learning (FL) framework that incorporates knowledge distilla-

tion to enable cross-regional load forecasting with improved
model resilience against unreliable or adversarial participants.
This framework employs a Gated Recurrent Unit (GRU) model
as the base forecasting architecture and a proxy model to
facilitate secure knowledge sharing across regions. Instead of
directly training a global model, FL is performed on the proxy
model, which is introduced to transfer globally aggregated
knowledge to local models through knowledge distillation.
Compared with the published literature, the main contributions
of this paper are as follows:

1) To address model heterogeneity arising from inconsistent
feature dimensions and potentially varied model architectures,
this paper introduces a proxy-model-based federated learn-
ing framework, proposed here for the first time. The proxy
model acts as an intermediate representation that bridges
heterogeneous local models, mapping each local model’s
heterogeneous features into a feature space that is identical
across all proxy models. Each proxy model receives latent
features distilled from its local model and, in turn, transfers
globally aggregated knowledge back to the local model. This
bidirectional distillation ensures that local models benefit from
cross-regional information while retaining their region-specific
characteristics. Because model exchange occurs at the level
of latent representations rather than direct parameter sharing,
the framework avoids parameter inconsistency issues and
inherently limits the propagation of poisoned updates, which
substantially improves robustness against Byzantine attacks
while enabling the identification and isolation of compromised
clients—a capability that traditional robust aggregation meth-
ods lack.

2) The framework incorporates a Perturbed Gradient De-
scent (PGD) algorithm to optimize proxy models under Non-
IID data conditions. Unlike conventional local Stochastic
Gradient Descent (SGD), PGD explicitly aligns each proxy
model’s update direction with global training objectives, pro-
moting stability and consistency across clients. This design
strengthens the robustness of the distillation process, a factor
often overlooked in prior federated knowledge distillation
approaches facing statistical heterogeneity.

3) To accommodate varying computational capacities
among clients, a dynamic exit mechanism is introduced. This
mechanism allows clients with different computational capaci-
ties to participate according to their own capabilities by exiting
training early based on preset thresholds, rather than requiring
uniform participation as in traditional FL frameworks — a
constraint that is often impractical under system heterogeneity.

The rest of the paper is organized as follows. Section II
introduces the proposed FL framework with knowledge dis-
tillation, detailing the proxy model design, PGD for handling
statistical heterogeneity, and the dynamic exit mechanism for
addressing system heterogeneity. Section III presents the ex-
perimental setup, including dataset details, evaluation metrics,
baseline comparisons, and the results analysis, demonstrating
the effectiveness of the proposed approach. Finally, Section IV
summarizes the key findings of the study.
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II. PROPOSED METHODOLOGY

A. Cross-Regional Load Forecasting under Heterogeneous
Federated Settings

In a regional load forecasting system, let there be IV regions,

each associated with a local dataset D; = {(X7,y/) =
1,2,...,N, where X ZJ € R% represents the input features such
as weather conditions, time of day, and regional indicators,
and y/ € R denotes the corresponding load targets. d; is the
number of input features for region ¢, and m; is the number
of data records. The primary objective is to train region-
specific models f;(6;), parameterized by 6;, which minimize
the prediction error on their respective datasets. The local task
loss for region i is defined as:
5 j e
Leas(6:) = — D If(XT;600) = ¥l

Cr—

D

which measures the mean squared error (MSE) between the
predicted and actual load values. However, optimizing f;(6;)
independently for individual regions may lean towards models
that are constrained by the limitations of local data, potentially
resulting in declined performance due to insufficient or poor-
quality training data. Leveraging cross-regional information is
expected to enhance the performance of individual models via
collaborative learning. However, inherent regional differences
in data distribution, computational capacities, and statistical
distributions further amplify the challenges of collaborative
learning.

B. Framework Overview

We propose a new FL framework for cross-regional load
forecasting, utilizing a GRU model to predict future load based
on historical data. The process begins with data preprocessing,
where regional historical data is collected, normalized, and
missing values are imputed. Each client (i.e., region) maintains
two local models: a personalized local model, and a proxy
model which is smaller in scale to address model heterogene-
ity. Only the proxy model participates in FL and transfers
knowledge to the personalized model through a knowledge
distillation process. As shown in Fig. 1, the proxy model
interacts with the global model by aligning its updates with
global model parameters during gradient descent, ensuring that
the proxy model adheres to the global model’s guidance while
retaining other unique local characteristics. The complete
framework flow is summarized in Algorithm 1.

To mitigate statistical heterogeneity, the proxy model is
updated using PGD with global regularization:

PrOXYfH = proxy} *U'(VE(PTOXY;;C ) + p(proxyf — glObalt)) )
2)
where 7 is the learning rate, £(proxyF) denotes the training
loss of the proxy model at round t for client k, p is a
regularization coefficient that aligns the proxy model with the
global model, and global, represents the global proxy model
aggregated at round t.
Meanwhile, the client model is refined using a combined
loss:
client} ; = client; — 7 - VL (client;),

3)
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Fig. 1. The proposed FL framework.

where E(clientfeC ) is a composite objective incorporating both
local supervised loss and the distillation loss, as defined in the
client update process of Algorithm 2.

Moreover, a dynamic exit mechanism is incorporated into
the training process to improve overall efficiency and adapt
to system heterogeneity. Specifically, each client continuously
monitors its validation loss during local updates, and termi-
nates training early once the loss falls below a predefined
threshold.

C. Local and Proxy Model Architecture

In the proposed federated learning framework, both the
local model f;(#;) and the proxy model p;(¢;) adopt a two-
layer Gated Recurrent Unit (GRU) [33] architecture to capture
the temporal dependencies in regional load forecasting tasks.
GRU is selected for its structural simplicity, computational
efficiency, and strong performance on sequential data. Since
clients often serve as edge devices with limited computational
and memory resources, it is crucial to utilize lightweight and
simple models.

Each model consists of:

o Two stacked GRU layers, each with 256 hidden units;

o A fully connected (dense) output layer to produce the
final forecasted value.

As illustrated in Fig. 2, the input to each model is a
sequence X € RT*d representing 1" time steps and d input
features (which may differ between clients), and the output is
a predicted load value §] € R. The detailed architecture of
the model is described below:

a) GRU Cell Dynamics.: The GRU cell is defined by the
following set of equations for each time step ¢:

2 =0(W,ay + Uzhy—q + 02) 4)
re = oc(Wexy + Uphi—1 + b;.) 3)
hy = tanh(Wyay + Up(re © hy—1) + by) (6)
hy = (1—Zt)®ht_1+2’t®]~lt (7

where:




IEEE TRANS. SMART GRID (EARLY ACCESS), DOI: 10.1109/TSG.2026.3660096

Algorithm 1 Federated Learning with Dynamic Exit and
Distillation (server-side)

Input: Client set C, exit threshold d, total training rounds 7T,
distillation epochs Ey, local epochs F, local data (Xj, V)
Output: Final local models { fx(0F)}rec and predictions
{Yitrec

Notations: w, is the global model after federated averaging
atround t+1, S is the set of active clients in the training round,
|S| is the number of active clients, client; ; and proxy? 'y, are
the updated models from clients and proxies respectively.

1: Server Execution:

2: Initialize S and client, proxylg

3: for eachround t =1,2,...,7T do

4 for each client k£ in S do

s: clientf, ; ,proxy¥, ; +ClientUpdate(client} ,proxy?)
6 if client £ meets exit condition (loss < §) then

7 Mark client k£ for exit

8 Update the set of active clients S

9

end if
10: end for
11: Update global model:
12: global; 1 <+ Federated Average(proxy? 1)
13: end for

14: Federated Average:
15: for each client k£ in S do

1
Wil = 5] Z PrOXYfH
kes
16: end for

e x; is the input at time ¢;

e hy_j is the hidden state from the previous time step;

e 2y and 7 are the update and reset gates, respectively;

. fzt is the candidate activation;

o W,,U,,b, are the learnable weights and biases;

o o0 denotes the sigmoid function and © denotes element-
wise multiplication.

b) Model Output.: After processing the input sequence
through two GRU layers, the final hidden state hr is passed
to a fully connected layer:

! = FC(hr) (8)

where FC denotes the final dense layer.

D. Addressing Model Heterogeneity through Proxy-Based
Knowledge Distillation

To address model heterogeneity, the proxy model p;(¢;) is
introduced for each region ¢, which serves as intermediaries
to standardize and abstract the local data representations.
Both the proxy and local models share an identical model
architecture, differing only in the number of input features
according to their regional data. This architectural consistency
ensures that knowledge distilled from the proxy to the local
models preserves the underlying temporal and structural pat-
terns, effectively reducing potential information loss.

hia

Xt

Fig. 2. Architecture of the GRU-based local and proxy models. Input
sequences are encoded through stacked GRU layers, followed by a dense
output layer for forecasting.

These lightweight proxy models are compact and struc-
turally uniform, allowing seamless integration across clients
with heterogeneous feature sets. By mapping all regional
inputs into an identical latent dimensionality through fea-
ture masking, the proxy ensures a consistent representation
space that supports coherent aggregation across heterogeneous
clients. As shown in Fig. 3, a feature-masking strategy is
applied to align different regional feature sets into a consistent
input dimension for the proxy model. Specifically, for client
i at time step j, the original input feature vector X; € R%,
where d; may vary across clients, is transformed into a masked
vector X7 € R, retaining only the essential load features:

X =Moo X!, X! eR¥ d,<d, 9)

where M; € {0,1}% is the feature mask for client i, ®

denotes element-wise multiplication, and dj, is the number of
essential load features shared across all clients.
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Fig. 3. Knowledge distillation process: heterogeneous client models (with
different feature sets) transfer knowledge to the proxy model, which aligns
client features X f to a unified representation X f retaining only essential load
features.

The global model serves as a centralized knowledge aggre-
gator, systematically consolidating and harmonizing regional
knowledge to establish a comprehensive understanding of
diverse geographical characteristics. Through the federated
averaging mechanism, it iteratively updates its parameters by
aggregating and synchronizing knowledge from all regional
proxy models:

Pt = l EN ®! (10)
g N v
i=1
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where ¢! denotes the parameters of the regional proxy model
for region ¢ at iteration ¢,and N is the total number of regions
participating in the aggregation. Since the proxy and global
models share an identical architecture, the aggregation process
preserves strict structural consistency. After aggregation, the
proxy model further aligns its parameters with the updated
global model through PGD, which is applied as the gradient
update for the proxy model within the local-proxy knowledge
distillation.

Knowledge transfer to local models is achieved through a
distillation loss that enables each local model f;(6;) to learn
from its region-specific proxy model. Because the proxy model
abstracts global knowledge—obtained through its parameter
alignment with the aggregated global model, it provides a
stable and reliable teacher for heterogeneous local models. The
distillation loss is defined as:

1 & ; iy
Laistn (03, ¢1, ¢9) = - D will £(X7505) = pi (XT3 60) 1%,
tj=1
’ an

where w; is the weight for each sample based on the similarity
between the predictions of the global model g(X/; ¢,) and the
true labels. This weight is computed as:

. o\
w; = softmax ( l9(Xy's69) = y; |> , (12)

T

where 7 is a temperature parameter that controls the smooth-
ness of the weight distribution. This reliability-aware weight-
ing highlights samples where global model predictions are
consistent with true values, suppressing unreliable teacher
signals and enhancing the effectiveness of knowledge transfer.

Both local and proxy models incorporate the distillation loss
in their training objectives to remain aligned, enabling mutual
guidance and enhancing prediction accuracy across regions.
The total loss for the local model can be written as:

Lioca1(0s, ¢4, ¢g) = aLiask(60i) + (1 — o) Laistin (63, @i, ¢g),
13)
where  Liask(6;) represents the  task-specific  loss,
Laistin (0;, @i, ¢g) 1is the distillation loss, and « is a
hyperparameter that balances task performance and knowledge
transfer.
Similarly, the proxy model’s loss can be expressed as:

Lproxy(ei, ¢i7 ¢g) = 6Lproxy—task(¢i)
+ (1 = B)Laistin(0s, 03, 0g), (14

where Lproxy—task(¢;) is the loss related to the task of the
proxy model. Lgistin (05, @i, ¢g) is the distillation loss from the
local model. § is a hyperparameter that controls the influence
of the loss of distillation on the proxy model.

By leveraging proxy models and distillation, this frame-
work ensures secure and efficient knowledge sharing while
maintaining local adaptation and prediction accuracy, making
it particularly suitable for the application of cross-regional
load forecasting. Considering geographical characteristics of
cross-regional load, we note that the proposed proxy-based
framework is compatible with extensions to spatial-temporal
modeling, which offers a promising direction for future im-
provements.

Algorithm 2 ClientUpdate with Local Training and Knowl-
edge Distillation (client-side)

Input: Client model clientf, proxy model proxyf’, distillation
epochs E, local epochs F, local data (X, Vi)
Output: Updated (client} ;, proxy 1)
1: ClientUpdate:
2: for each client k do
3: Run Local Model Training:
for each epoch e = 1,2,..., FE do
Train local model using local data (X, Vi)
end for
for each epoch e =1,2,...,FE; do
Run Knowledge Distillation with local model and
proxy model:
o: Update clientf, ; and proxyf, ;:
client}, ; = client; — 5 - VL(client})
PTOXYfH = proxy} — n[-VL(proxyf) + pu(proxy; —
global, )]
10: end for
11: end for

® 3R

E. PGD Algorithm for Statistical Heterogeneity

To address statistical heterogeneity, the PGD algorithm is
employed for updating proxy models. PGD incorporates a
regularization term that aligns local proxy models with the
global proxy model, thereby mitigating the impact of these
data distribution differences [34]. The PGD update rule is
defined as:

¢§+1 = qﬁf - (V(;sinroxy((bi) + ,U/(¢f - ¢tg>) ’ (15)

where 7 is the learning rate, Lproxy(gbi) represents the loss for
proxy model for region %, and p is a regularization coefficient
controlling the influence of the global proxy model g(o,).
The regularization term u(¢f — gbg) ensures that proxy mod-
els trained on diverse regional datasets remain aligned with
global knowledge, reducing the adverse effects of statistical
heterogeneity, while enhancing the stability and reliability of
the convergence process.

Convergence Guarantee. We analyze the convergence behav-
ior of PGD in the presence of statistical heterogeneity. Unlike
standard federated learning, PGD introduces a regularization
term in each local objective to align client models with
the global proxy model. The overall federated optimization
objective becomes:

K
minF(9) = 3 pi (Fu(@x) + Glloe = d[) . 16)
k=1

where Fj(¢r) := Eeop, [f(¢r;§)] denotes the expected local
loss on client k, and p is the proximal regularization coefficient
that controls the strength of alignment with the global proxy
model ¢,4. Here, { ~ Dj, denotes a data sample drawn from
the local data distribution Dy, of client k. ¢ = {¢1,..., P}
denotes the set of local proxy model parameters for all clients,
and ¢, is the global proxy model shared across clients.
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To establish convergence, the following standard assump-
tions, consistent with those in the aforementioned literature,
are made:

« L-smoothness: Each local objective F}, is L-smooth, i.e.,
IVF(9) — VE(&) < L6 — || for all ¢, ¢’ € R

o Bounded Dissimilarity: There exists a constant B > 1
such that Ex||VF(¢)|? < B?||VF(9)||? for all ¢.

o Inexact Local Solution: Each client performs K lo-
cal updates per round and returns an e-accurate so-
lution ¢} " such that Fp(¢i™") + &(lo) — of)* <
ming (Fi(6) + 56 — 0411%) +e.

Under these conditions, it can be shown that PGD en-
sures convergence in expectation. Specifically, after T' global
communication rounds, the average squared gradient norm
satisfies:

1 — 1 B2
S E(VFI <07+ TH).
t=0

N

K

where ¢! is the aggregated proxy model at round ¢, p is the
proximal regularization coefficient, and K is the number of
local updates per round.

This bound decomposes into two terms:

e O(1/T): Reflects the standard optimization error that
vanishes as T' increases.

e O(B?12e?/K): Captures the bias introduced by statis-
tical heterogeneity and local approximation error, scaled
by the regularization strength .

Thus, by selecting an appropriate ;1 and increasing K, PGD
effectively limits the influence of client drift and mitigates the
impact of data heterogeneity. The proximal term p (¢} — ¢f))
serves as a stabilizer, encouraging local models to remain close
to the global reference and leading to smoother and more
stable convergence behavior in federated settings.

F. Dynamic Exit Mechanism for System Heterogeneity and
Deployment

To accommodate system heterogeneity, we introduce a
dynamic exit mechanism that allows clients to exit the training
process once their performance meets a predefined threshold
0. The exit condition is defined as:

. 1: if Lval(i) S 0
Texit(2) = ) 18
exi(7) {O, otherwise (18)

where Iexit(¢) is the binary indicator for whether client 7 exits
the training process (1 indicates the condition is satisfied),
Ly, (i) is the validation loss. Once a client exits, it no longer
participates in local training or global aggregation. Clients
are allowed to perform a varying number of local iterations
following this dynamic exit mechanism, unlike traditional FL,
which requires equal epochs for all clients. The contribution
of client updates is determined by whether the client is active
during the training process. This is achieved by modifying the
federated averaging rule:

N .
PLHt = i1 Lactive (i) - 6
7 leil HaC‘cive(i)

) 19)

where Tove(¢) indicates whether client ¢ is still active, and ¢§
represents the model parameters of client ¢ at iteration ¢.

To track the clients that are still participating in the current
round of training, S is defined as the set of active clients
which is dynamically updated each round. The global model
is then updated by aggregating the models only from the
active clients. The dynamic exit mechanism mitigates system
heterogeneity by allowing clients to participate according to
their computational capacity, even when their training progress
differs.

In practical deployment, the framework operates in an
offline training—online prediction mode. Local and proxy
models are collaboratively trained offline through federated
rounds using the dynamic exit mechanism. After training is
completed, only the inference components of regional models
are deployed for online forecasting. Newly arriving data are
directly fed into these fixed models to generate real-time
rolling predictions, without performing any online parameter
updates. This design minimizes computation and commu-
nication overhead in real-world operation. To accommodate
long-term distributional shifts, the entire framework can be
periodically retrained offline from scratch using accumulated
new data, ensuring full adaptation to evolving regional load
patterns.

III. CASE STUDY

In this case study, comprehensive experiments are conducted
to evaluate the performance and efficiency of the proposed
FL framework for cross-regional load forecasting. Specifically,
we investigate the impact of the framework’s components
on model accuracy and resilience. We also analyze the ef-
fectiveness of the dynamic exit mechanism in facilitating
stable and efficient collaboration among clients with diverse
computational resources and data characteristics.

A. Dataset Description and Preprocessing

The dataset used for our experiments is sourced from an
open-access energy system dataset from the Open Power
System Data Platform [36], containing energy-related data
from multiple European countries, including features such as
load, temperature, solar and wind power generation, electricity
price, radiation intensity and day type (i.e., whether the day is
a weekend). Time series data are selected from six countries,
with each country treated as an independent region and a
sampling interval of one hour applied.The dataset spans two
years, covering the full period from 2018 to 2019. To fully
demonstrate the model heterogeneity across different regions,
a varying number of dataset features are allocated to each
region. The six selected countries represent a balanced distri-
bution across northern and central-western Europe, enabling
us to explore the diverse energy characteristics and conditions
prevalent in these areas.

The details of the data for each region and features used in
the local models are specified in Table I, while the proxy model
exclusively uses load as its feature and does not incorporate
any region-specific private or sensitive data.
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As shown in the heatmap in Fig. 4, the load in the AT
region shows strong correlations with several variables. These
correlations emphasize the influence of regional characteristics
on load behavior and highlight these features can be effectively
leveraged for load forecasting.

Correlation Heatmap
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Fig. 4. Correlation heatmap of the AT region showing the relationships
between load and other features.

The detailed data preprocessing procedures are summarized
as follows.

a) Data Normalization and Missing Value Handling:
Max-Min Normalization is applied to preprocess the input
data. Each data point X is transformed using

X - Xmin

X max X min ’
where X i, and X ..« are the minimum and maximum values
in the dataset, ensuring that all values are scaled between 0
and 1. To address missing data, a temporal imputation method
is applied by filling each missing value with the corresponding
hour’s data from either the previous day or the same weekday
of the previous week, ensuring temporal consistency.

b) Sequence Construction for GRU Input: To prepare
the data for GRU-based forecasting, a sliding window with
window size of 24 hours is employed. For each time step ¢,
the input sequence consists of the previous 24 hours:

Xinput[t] = [X[t — 23], X[t — 22], ..., X[£]].

Xnorm = (20)

2y

Each X|t] is composed of:
o Load values from the previous two time steps, L[t — 1]
and L[t—2], capturing short-term temporal dependencies.
o Other region-specific features at the current time step
according to Table I, denoted as F[t].
Thus, the GRU input at time step ¢ is

X[t] = [L[t — 1], L[t — 2], F[t]]. (22)

For proxy models, only historical load features are used.
These are selected via the feature-masking strategy to preserve
essential temporal patterns while ensuring a compact and
consistent representation across regions.

The target output for each time step is the load at the next
hour:

Y[t] = L[t + 1], (23)

allowing the model to forecast the load based on the previous
24 hours of historical data and exogenous features.

TABLE I
SELECTED REGIONAL DATASETS AND CORRESPONDING INPUT FEATURES.

Clients Features
Austria(AT) load,solar,temperature,radiation,price,weekend
Belgium(BE) load,solar,temperature,radiation,weekend
Bulgaria(BG) load,solar,temperature,radiation
Czech Republic(CZ) load,solar,temperature,radiation,weekend
Estonia(EE) load,solar,temperature,radiation,weekend
Finland(FI) load,solar,temperature

¢) Train-Validation Split: After preprocessing and se-
quence construction, the dataset is divided into training and
validation sets with a 7:3 split. The split is done in temporal
order to avoid information leakage, ensuring that the validation
set corresponds to future time periods relative to the training
set. This preserves the temporal consistency of the forecasting
task and ensures reliable evaluation of the model’s predictive
performance.

B. Evaluation Metrics

The performance of the proposed framework is evaluated
using standard metrics such as Mean Absolute Percentage
Error (Mean-APE) and Maximal Absolute Percentage Error
(Max-APE), which are defined as:

1 <y — 0
Mean — APE = — > [Z %) s 100%,  (24)
(Ll p £
_ Yi — Ui
Max — APE = max ( e 100%) , (25)
g Yi

where y; represents the true value, y; is the predicted value,
and n is the total number of prediction samples. These
metrics measure the accuracy of the predictions, with lower
values indicating better model performance. In this context: 1)
Mean-APE represents the average error across all predictions,
corresponding to the overall average accuracy of the model; 2)
Max-APE reflects the worst-case error, corresponding to the
minimum accuracy observed in the predictions.

C. Hyperparameter Tuning for Personalization and Robust-
ness

Three core hyperparameters p, o, and 3 control the trade-
off between local adaptation and global consistency in our
proposed framework:

o p: regularization strength for aligning proxy and global
models via PGD;

o a: weight of the local task loss for personalization;

o [3: weight of the distillation loss for global knowledge
transfer.

To determine the optimal values of key hyperparameters,
we conduct a coordinate-wise grid search, where u € [0, 1] is
explored with a step size of 0.1, and «, 8 € [0, 1] are evaluated
with a step size of 0.2. In each iteration, two parameters are



IEEE TRANS. SMART GRID (EARLY ACCESS), DOI: 10.1109/TSG.2026.3660096

held fixed while the third is tuned to minimize the validation
Mean-APE or Max-APE.

The hyperparameters « and [ are particularly critical, as
they control the trade-off between task-specific learning and
knowledge distillation. Specifically, & modulates the contribu-
tion of the distillation loss in the training of local models,
while B serves an analogous role for the proxy models.
As illustrated in Fig. 5, we examine the effects of varying
« and S on client EE with g fixed at 0.5. Similar trends
are observed across other clients: larger values consistently
lead to lower Mean-APE, highlighting improved forecasting
accuracy. To ensure a balanced integration of local objec-
tives and global knowledge, we exclude extreme values of
0 and 1 from consideration. In particular, setting « = 1 or
B = 1 entirely removes the influence of the distillation loss,
effectively disabling cross-model knowledge transfer. Based
on empirical results, setting both a and S around 0.8 offers
the most favorable trade-off between personalized learning and
collaborative generalization.

Mean-MPE (%) for EE
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Fig. 5. Mean-APE heatmap for different o and 3 values, with fixed px = 0.5
for client EE.

Since statistical heterogeneity mainly impacts Max-APE,
Fig. 6 presents the Max-APE results under different . values,
with both v and § fixed at 0.8 to emphasize strong personal-
ization and knowledge transfer. Notably, each client achieves
optimal performance at a distinct p: 0.6 (AT), 0.3 (BE), 0.3
(BG), 0.6 (CZ), 0.7 (EE), and 0.3 (FI). This diversity highlights
the inherent heterogeneity across clients and suggests that
a universal g setting is suboptimal. Instead, client-specific
tuning enables a better balance between global guidance and
local adaptation, enhancing robustness in statistically Non-IID
federated environments.

Max-APE for Different p Values

4.5, Clients

Fig. 6. Comparison of Max-APE across different o values. Each client
achieves the best performance at distinct p.

D. Ablation Study

To validate the advantages of the proposed framework, we
design four baseline frameworks based on existing literature:

o Local training: Each region trains its model independently
without any knowledge sharing.

o Traditional FL: Standard federated learning is applied
without personalization or knowledge distillation.

o FedProx: Clients participate in federated learning with
an additional proximal-term regularization to the lo-
cal objective, which encourages convergence towards a
global objective while handling statistical heterogeneity
and preserving some local model personalization [34].

o FedAMP: Each client aggregates other clients’ models
through attentive message passing, weighing more heav-
ily those models that are similar to its own. This yields
a personalized model for each client without relying on
a single global model [35].

In all configurations, models use the same historical load
data as input features. Differences lie in how knowledge is
shared and how personalization is applied. This setup allows us
to systematically evaluate the benefits of existing methods that
address statistical heterogeneity and enable model personaliza-
tion, highlighting the advantages of the proposed framework
in these aspects. The parameters used in the experiments are
summarized in Table II.

TABLE II
EXPERIMENTAL PARAMETERS.

Parameter Value
Number of communication rounds 10
Local epochs per client 50
Knowledge distillation epochs 30
Number of clients 6
Aggregation method FedAvg

Local model architecture
Proxy model architecture Two-layer GRU
Hidden layer units 256
Training-validation split 7:3

Local training learning rate 0.001
Knowledge distillation learning rate 0.001

Local Optimizer Adam’s parameters step_size = 10, gamma = 0.1
PGD Regularization parameters (1) [0.6, 0.3, 0.3, 0.6, 0.7, 0.3]
Local model input size (excluding load) [5, 4, 3,4, 4,2]
Distillation parameters («, [3) 0.8, 0.8

Two-layer GRU

The detailed performance comparison between the pro-
posed framework and the baseline methods is summarized
in Table III. It can be observed that local training, where
each client learns independently without knowledge shar-
ing, exhibits notable limitations, particularly in extreme load
scenarios, as reflected by the high Max-APE values across
clients. Standard FL (FedAvg) reduces the overall Mean-
APE by leveraging cross-client information, demonstrating
the benefit of collaborative learning. However, certain clients
still experience elevated Max-APE, indicating that standard
FL may be vulnerable to worst-case errors and less capable
of capturing heterogeneous regional patterns. In contrast, the
proposed framework, which incorporates proxy-based knowl-
edge distillation, effectively mitigates these limitations. By
enhancing generalization across diverse regional distributions
and reducing overfitting to local data, it achieves substantial
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TABLE III
NUMERICAL METRICS OF THE PROPOSED FRAMEWORK OVER FL.

Clients Metrics Local FL FedProx FedAMP Proposed
AT Mean-APE(%) 0.32 0.12 0.13 0.12 0.09
Max-APE(%) 6.92 7.51 7.59 6.48 1.83
BE Mean-APE(%) 0.13 0.11 0.13 0.08 0.05
Max-APE(%) 7.11 7.34 6.86 6.50 0.88
BG Mean-APE(%) 0.26 0.23 0.24 0.28 0.11
Max-APE(%) 1094 1230 10.98 15.76 1.21
CzZ Mean-APE(%) 0.23 0.13 0.14 0.13 0.09
Max-APE(%) 5.18 7.00 9.10 6.06 0.63
EE Mean-APE(%) 0.58 0.15 0.16 0.15 0.37
Max-APE(%) 16.71  16.15 15.78 16.95 1.47
FI Mean-APE(%) 0.16 0.13 0.12 0.17 0.13
Max-APE(%) 5.49 6.79 6.52 7.24 3.35
Average  Mean-APE(%) 0.28 0.15 0.15 0.16 0.14
Max-APE(%) 8.73 9.52 9.47 9.83 1.56

reductions in Max-APE while maintaining competitive Mean-
APE. Consequently, even the regions with the most challeng-
ing load patterns benefit from improved robustness and more
reliable prediction performance, resulting in a balanced and
consistent forecasting model across all clients.

As personalized FL. methods, FedProx slightly reduces Max-
APE by mitigating the effects of non-IID distributions, but its
reliance on aligned feature spaces and uniform model struc-
tures limits its ability to fully capture cross-regional diversity.
FedAMP, by leveraging attention-based aggregation, reduces
Mean-APE across most clients, yet Max-APE increases on
some individual clients due to model personalization. Similar
to FedProx, its effectiveness is still constrained by the need
for aligned feature spaces and consistent model architectures.
In contrast, the proposed framework achieves consistently
lower Mean-APE and Max-APE across all clients, demonstrat-
ing superior accuracy and robustness while overcoming the
limitations of feature and model heterogeneity that constrain
traditional personalized FL. methods.

To assess the effect of model architecture on the proposed
framework, we compare four recurrent neural network vari-
ants: LSTM [37], SLSTM [38], Peephole-LSTM [39], and
ChronoLSTM [40]. These models differ in gating mechanisms
and computational properties. All models adopt a two-layer
structure with 256 hidden units and are trained under identical
settings. As shown in Table IV, which presents the perfor-
mance on client AT, the GRU-based model achieves the best
performance in both Mean-APE and Max-APE, confirming its
effectiveness and efficiency for federated forecasting.

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT RNN VARIANTS ON CLIENT
AT UNDER THE PROPOSED FRAMEWORK.

Model Architecture = Mean-APE (%) Max-APE (%)

GRU 0.09 1.83
LSTM 0.23 3.83
SLSTM 0.42 4.09
Peephole-LSTM 0.25 2.97
ChronoLSTM 0.40 443

The stability benefits of PGD are evaluated by comparing
its use versus Adam in updating the proxy model, with local
models always trained using Adam and global aggregation
unchanged. Fig. 7 shows the training and validation loss curves
of client AT. Both Adam and PGD exhibit similar convergence
speed; however, Adam suffers from larger oscillations during
training. In contrast, PGD demonstrates smaller fluctuations
and more stable convergence, indicating better robustness to
Non-IID noise through regularization.

Adam vs PGD: Training and Validation Losses of AT (Zoomed 0-0.015)
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Fig. 7. Training and validation losses comparison between Adam and PGD
for client AT. Both optimizers converge at similar speed, but PGD exhibits
more stable convergence with smaller oscillations.

E. Model Resilience Evaluation

To further evaluate the resilience of the proposed framework
against adversarial updates, we compare it with several repre-
sentative robust aggregation mechanisms in federated learning,
including Krum, Geometric Median (Median), and Trimmed-
Mean. These robust aggregation methods are designed to
mitigate the influence of Byzantine clients by either selecting
updates close to the majority (Krum), computing the geometric
median of all updates (Median), or trimming extreme values
along each parameter dimension (Trimmed-Mean) [20], [41],
[42].

The vulnerability of FL under adversarial conditions is
evaluated using three representative types of Byzantine attacks,
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Performance Degradation Comparison under Different Attacks
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Fig. 8. Comparison of performance degradation under different attack types. Each attack (Gaussian, Fixed Noise Addition, and Magnitude Amplification)

includes results from six clients.(* indicates the attacked client.)

as summarized in Table V: Gaussian attacks [43], Magnitude
amplification attacks [44], and Fixed noise addition attacks.
Beyond these basic attack types, three adversarial scenarios
are designed to examine the robustness of the system under
increasing levels of threat:

o Single-Attacker: A single client (BE*) becomes malicious
in the fifth communication round and submits manipu-
lated gradients following the attack described in Table V.

o Multi-Attackers: Two clients (BE* and BG*) simultane-
ously launch malicious updates in the fifth round, both
employing Magnitude Amplification perturbations.

« Persistent-Attack: The client BE* continuously performs
adversarial updates for five consecutive communication
rounds starting from the fifth round, employing Magni-
tude Amplification perturbations.

TABLE V
BYZANTINE ATTACK TYPES AND PARAMETERS.

Attack Type Perturbation Formula Parameter
Gaussian witcked — w; 4 N(0,0%) 02 =0.01
Fixed Noise Addition w';.““‘Cked =w; +c c=0.5
Magnitude Amplification wittacked — ;5 X A =100

Validation performance is measured in terms of Mean-
APE, where lower Mean-APE values and higher accuracy
indicate better prediction performance. Let M yiginal denote
the model performance (e.g., validation accuracy) before the
attack and M z¢tackeq denote the performance after introducing
the perturbed model from Client BE. The relative performance
degradation is computed as:

Mori inal — Ma acke
AM = Z-otiginal tacked 5 100%.
Moriginal

(26)

The results in Fig. 8 first examine single-attacker across
multiple attack types, comparing FedAvg, robust aggregation
methods (Krum, Median, Trimmed-Mean), and the proposed
framework. Under Gaussian attacks, all methods showed
minimal degradation. Under more disruptive attacks such
as Magnitude Amplification, FedAvg exhibited a clear per-
formance collapse, confirming its weakness against strong

adversarial manipulation. Robust aggregation methods, in con-
trast, remained highly effective under single-client attacks,
successfully filtering malicious updates and maintaining stable
performance.

Based on these results, FedAvg is excluded from further
adversarial evaluations, as it consistently underperforms and
provides no meaningful robustness margin. We therefore select
Magnitude Amplification, the attack type with the most severe
impact, as the representative adversarial setting for subsequent
experiments. Under this setting, we focus on comparing robust
aggregation methods with the proposed framework.

As shown in Fig. 9, for persistent attacks—where a
single client repeatedly submits adversarial updates across
rounds—existing robust aggregation methods remain resilient
and prevent significant model degradation. However, under
multi-attacker scenarios, their robustness diverges: Trimmed-
Mean in particular exhibits clear performance degradation, as
simultaneous extreme updates from multiple malicious clients
reduce the effectiveness of its statistical filtering. In contrast,
methods such as Median and Krum retain relatively stable
behavior.

In comparison, the proposed framework consistently main-
tains robustness across all adversarial settings, including
single-attacker, persistent, and multi-attacker cases. Because
global knowledge is transferred through distillation rather
than direct parameter aggregation, adversarial updates from
local personalized models are naturally isolated and cannot
corrupt the global representation. Furthermore, the proposed
framework makes abnormal client behavior more distinguish-
able, enabling easier identification of compromised clients
and supporting targeted defense in subsequent communication
rounds—capabilities that traditional robust aggregation algo-
rithms typically lack.

F. Computation-Aware Federated Training via Early Exit

To address system heterogeneity and improve training ef-
ficiency, a dynamic exit mechanism is introduced, enabling
clients to stop local training once their validation performance
reaches a convergence threshold. For each client ¢, the exit
condition is defined as:

£ < s, 27)
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Performance Degradation Comparison under Magnitude Amplification Attack Across Different Scenarios
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Fig. 9. Comparison of performance degradation under Magnitude Amplification Attack across different scenarios (Multi-Attackers and Persistent Attack) for

four aggregation methods. (* indicates the attacked client.)

where [IEZ) denotes the validation loss at round ¢, and §;
is a client-specific threshold determined from the validation
loss in the baseline training without dynamic exit. Once this
criterion is satisfied, the client exits subsequent federated
rounds, conserving computational resources while maintaining
convergence quality.

TABLE VI
COMPARISON OF TRAINING EPOCHS WITH AND WITHOUT DYNAMIC EXIT.

Client Without Exit With Exit Reduction (%)
AT 800 800 0.00%
BE 800 290 63.75%
BG 800 530 33.75%
CzZ 800 770 3.75%
DE 800 800 0.00%
FI 800 370 53.75%
Average - - 25.83%

As shown in Table VI, the total number of training epochs
is reduced by approximately 25% on average, demonstrating
substantial computational savings. This computation-aware
strategy effectively balances convergence and efficiency, en-
abling scalable and resource-adaptive federated learning under
heterogeneous system conditions, and thus facilitates practical
deployment in real-world applications.

IV. CONCLUSION

This paper presents a novel federated learning framework
for cross-regional load forecasting, effectively addressing sta-
tistical, model, and system heterogeneity in traditional FL. The
framework incorporates proxy models with feature-masking
to align feature dimensions across heterogeneous clients,
enabling secure and efficient knowledge transfer through
knowledge distillation. Perturbed Gradient Descent (PGD) is
employed to stabilize training across diverse regional models,
while the dynamic exit mechanism allows clients to terminate
training early based on computational capacity, supporting
broader participation without significantly compromising ac-
curacy. Experimental evaluations on European energy datasets
demonstrate that, compared with representative personalized
FL baselines, the proposed framework achieves consistently

lower MAPE and significantly reduced extreme prediction er-
rors, highlighting its effectiveness and robustness under cross-
regional heterogeneity. To further assess the effectiveness of
enhanced robustness of the proposed framework, three Byzan-
tine attacks and three attack scenarios are simulated. Compared
with traditional FL and robust aggregation methods, the pro-
posed framework effectively isolates compromised clients and
maintains model robustness. The proposed framework offers
a viable pathway toward reliable and practical FL deployment
in complex, heterogeneous energy systems.
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