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ABSTRACT 

With fast growing renewable generations, source-grid-load-storage (SGLS) integrated systems have emerged in recent years. The 
economical feasibility of SGLS system is still a challenge in many power systems. This paper proposes a multi-period source-storage 
coordinated planning model for SGLS system project considering spatio-temporal complementarity and dynamic source cost. In 
order to capture demand for flexible resource and wind-solar complementarity, the model develops hourly operation constraints 
for wind power, photovoltaic output, and load. It incorporates annually changing investment costs for photovoltaic generators, 
wind turbine, and energy storage, determining the optimal investment timing. A concept of self-declared capacity is proposed to 
coordinately minimize the capacity fee by leveraging local resources. Case study with real-data demonstrates that the proposed 
model can reduce total life-cycle costs by 7.54% to 9.67% and capacity costs by approximately 7.6%, compared to the original project, 
while assisting the main grid in peak shaving and valley filling. The results reveal that wind farms tends to be built in the early 
stages, while PV generator and energy storage tend to defer investments. A high proportion of PV generator has seen an increase 
in the share of energy storage, while energy storage is most sensitive to cost reductions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

The global energy transition towards sustainability is driving
the rapid integration of renewable energy sources into power
systems [ 1, 2 ]. The power system planning and operation tends
to jointly coordinate sources, grids, loads, and storage, improving
the utilization efficiency and unlocking flexibility of various
resources. The source-grid-load-storage (SGLS) integrated system
has emerged as a pivotal concept addressing this need. An
SGLS system operates in a coordinated fashion, with a primary
emphasis on realizing strong synergy and efficient integration
among its components [ 3 ]. 
Abbreviations: SGLS, source-grid-load-storage; PV, photovoltaic; TOU, time-of-use. 
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Research on the scheduling aspect of SGLS has already been
conducted extensively [ 4–9 ]. Although these operational studies
are crucial, they often assume a given system configuration. The
planning stage, which determines the optimal type, size, and tim-
ing of component investments, is fundamentally important for 
ensuring the technical and economic viability of an SGLS system.

In SGLS-related planning studies, accurately characterizing wind 
and solar power generation remains a major challenge. Numer-
ous studies have been dedicated to addressing the uncertainty
of wind and solar power generation. Stochastic optimization is
one of the commonly used methods, generating random scenarios
Derivs License, which permits use and distribution in any medium, provided the original work 
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of wind and solar by pre-setting parameter distributions [ 3, 10 ]
or deep learning [ 11 ]. Robust optimization is also widely applied
in the literature on power system planning and operation. It
avoids probabilistic assumptions by defining an uncertainty set
and finding a solution that remains feasible under the worst-case
realization within this set [ 12–15 ]. Information gap decision (IGD)
is also frequently employed to address this uncertainty [ 16, 17 ]. 

Some studies also employs deterministic inputs based on histor-
ical data to describe wind and solar power generation. However,
to reduce computational complexity, these studies often generate
typical scenarios through clustering methods [ 18–22 ] or use the
annual aggregation parameter [ 23 ] to simulate wind and solar
power generation. 

Although these studies have made significant contributions to
SGLS planning, whether in probabilistic scenarios, uncertainty
sets, or typical scenarios after clustering, they tend to weaken the
spatio-temporal characteristics and complementarity properties
of wind and solar power generation. Another limitation of
the aforementioned studies is that they typically assume static
unit investment costs, which prevents planning decisions from
achieving true economic efficiency. 

To address these challenges, this paper proposes a multi-period
source-storage coordinated planning model. The main contribu-
tions are as follows: 

1. This work proposes a source-storage planning approach that
considers locational wind-solar complementarity. In order
to capture the flexibility demand, the hourly operation con-
straints are enforced in the planning model. The generation
of PV and wind farms has seasonal trends and hourly
profiles. The hourly operation constraints can capture the
spatio-temporal and complementarity characteristics of local
wind-solar resources. 

2. A novel concept of self-declared capacity is proposed. In some
electricity markets, such as China, the state holder of SGLS
system pays the energy cost and the capacity fee. The capacity
fee is calculated on the basis of the peak load. By leveraging
local resources within SGLS, this work proposes to submit a
self-declared peak load, which is a net peak load, that is, local
generation minus load. 

3. The model incorporates the dynamic investment cost of the
renewable generator and storage. This helps determine the
optimal investment time for different resources. Therefore,
the state holder can minimize the life-cycle energy cost
with optimally self-declared capacity, installed capacity for
resources, and investment time. 

4. This work conducts comprehensive case studies with real-
world data from western China. By considering the loca-
tional wind-solar complementarity, self-declared capacity,
and dynamic investment cost, the real-world data based
simulation results provide insights for SGLS system planning.
Some general inclusions can be applied in different regions. 

The remainder of this paper is organized as follows. Section 2
analyzes the limitations of existing research in detail and proposes
a source-storage operational mode; Section 3 constructs the multi-
2 of 14
period source-storage coordinated planning model; Section 4 
introduces the evaluation metrics for planning results; Section 5
analyzes optimal planning strategies under different cost reduc- 
tion pathways and resource characteristics. Finally, this paper is
concluded in Section 6 . 

2 Problem Statement 

This section will discuss the two issues raised in the Introduction
section, and develop a source-storage coordinated optimiza- 
tion framework. 

2.1 Spatio-Temporal Characteristics of Wind and 

Solar Resources 

As highlighted in the introduction, a significant challenge in
SGLS planning lies in the accurate characterization of wind and
solar power generation. The core of the problem is twofold.
First, existing methods, whether based on random scenarios,
uncertainty sets, or clustered typical scenarios, often struggle to
accurately capture the full-resolution temporal characteristics of 
wind and solar generation. This limitation makes it difficult to
represent critical operational details such as intra-hour variabil- 
ity, multi-day “wind droughts,” or rapid ramping events, which 
are essential for determining storage sizing and system flexibility
requirements. Second, solar generation peaks during daylight 
hours and wind generation often increases at night or in cer-
tain seasons. This inherent daily and seasonal complementarity 
between wind and solar resources is a valuable characteristic,
which can be leveraged to reduce storage requirements and
overall system costs. When this complementarity is diluted with
aggregation or probabilistic representation, the planning model 
can fail to exploit this natural synergy for a more economical
system design. 

Against this problem, the model proposed in this paper calculates
the instantaneous capacity factor based on 8760 h of historical
wind and solar output data. By combining this with the planning
wind and solar capacity, the maximum hourly output limit for
wind and solar power can be determined. 

This methodology ensures that the optimal planning strategy 
is performed against the exact chronological sequence of 8760
hourly data points for an entire year. By doing so, the model
explicitly accounts for the precise timing of peak solar insolation,
nocturnal wind patterns, and the correlation between resource 
availability and load demand. The resulting planning strategy is
therefore deeply tailored to the unique temporal characteristics
and complementarity properties of the local wind and solar
resources, leading to a system configuration that is both more
reliable and economically efficient than those derived from
simplified representations. 

2.2 Investment Cost and Capacity Fee 

A critical factor influencing the economics of source-storage
coordinated planning is the rapid decline in the cost of key
technologies. According to the “China Renewable Energy Project 
IET Renewable Power Generation, 2026
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FIGURE 1 Schematic diagram of source-storage coordinated plan- 
ning. 
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Cost Management Report 2024” released by the China Renewable
Energy Engineering Institute (CREEI), the total investment per
kilowatt for centralized onshore photovoltaic power generation
projects in China has significantly decreased from approximately
14,850 RMB/kW at the beginning of the 12th Five-Year Plan period
(2011) to about 3,450 RMB/kW in 2024, representing a reduction
of over 76%. During the same period, the unit cost of wind power
projects has also been declining annually: In 2024, the onshore
unit cost reached 4,200 RMB/kW, representing a decrease of
approximately 49% compared to 2011. This rate of decline is
slightly lower than that of photovoltaic projects. CREEI forecasts
that investment costs for solar and wind power will decrease by
approximately 25% and 20%, respectively, by 2030. 

Equally important is the cost decline in energy storage, a key
enabler for mitigating the intermittency of renewables. According
to the report “Batteries and the Energy Security Transition”
published by the International Energy Agency (IEA) in 2024,
lithium-ion battery costs have fallen by 90% since 2010, with
higher energy density and longer lifespans. Their price dropped
from $1,400 per kWh in 2010 to under $140 per kWh in 2023,
making it one of the fastest-declining energy technologies in
terms of cost. IEA also forecasts that the cost of lithium-ion
battery energy storage will decline by a further 30%–40% by 2030.

Existing single-period planning models are often based on static
cost assumptions [ 10, 11, 18, 19 ]. While multi-period planning
models incorporate discount factors, the unit investment costs for
various facilities within the planning period are also treated as
fixed parameters [ 13–16, 20 ]. Ignoring these dynamic cost trends
prevents models from optimizing the crucial trade-off between
“early in vestment for early returns” and “delayed investment for
lower costs” across the project life-cycle—a strategic decision vital
for the economic success of SGLS system projects. 

To implement these insights, this model sets the unit investment
costs for wind turbines, PV generators, and energy storage as
dynamic parameters that decline annually at a fixed rate, with the
decline rate calculated based on reports from CREEI and IEA. In
the meantime, the capacity is considered as a decision variables.
The model can effectively balance the benefit of early revenue
generation against the advantage of accessing cheaper technolo-
gies in future years, thereby achieving truly economically optimal
planning decisions that reflect real-world market dynamics. 

2.3 Self-Declared Capacity Fee 

The capacity fee is the payment made by the state holder of the
SGLS system to the main grid in some electricity markets. The
capacity fee is collected to guarantee the peak-load supply by the
main grid. Therefore, it is calculated based on the peak load level
of the market participants. As a new market participant, the SGLS
system can adjust the net load by adjusting the local generators
and storage, even the loads. Therefore, it provides an opportunity
to self-declare capacity. 

When self-declared capacity is incorporated into the planning
model, SGLS system owners can further reduce lifecycle costs.
Simultaneously, under capacity cost constraints, they can also
IET Renewable Power Generation, 2026
minimize their maximum demand to reduce the impact on the
main grid. 

2.4 Framework of Source-Storage Coordinated 

Planning 

Beyond accurate wind-solar representation and dynamic costs, 
a credible planning model must consider realistic operation 
scenarios. The SGLS system does not operate in isolation but
interacts continuously with the main grid. Based on the preceding
analysis, this subsection proposes a framework of source-storage
coordinated planning for the SGLS system project. 

The proposed framework of source-storage coordinated planning, 
as illustrated in Figure 1 , considers a generation-side consisting
exclusively of wind turbines and PV generators (most relevant
to the modern power system [ 24 ]), complemented by energy
storage system and connected to the main grid to serve the local
load demand. 

This schematic highlights the multiple, interacting factors that 
the planning model must consider: 

∙ Wind-Solar Resources : The spatio-temporal characteris- 
tics of local wind and solar resources play a critical role
in shaping system planning. Wind power typically peaks 
at night, whereas solar generation is concentrated during 
daytime hours, giving rise to natural complementarity that 
significantly affects the optimal capacity allocation among 
wind, PV, and storage. 

∙ Main Grid : While the generation side contains only inter-
mittent renewable sources, the project inevitably relies on the
main grid to purchase electricity during periods of resource
shortfall, ensuring reliable supply to the internal load. This
interaction imposes dual requirements: the project must 
achieve both internal economic efficiency and stable opera- 
tion while simultaneously satisfying grid-support obligations. 
These include smoothing the net load curve of the main grid,
reducing peak downward power flows to prevent transmis-
sion overloads, and providing peak-shaving and valley-filling 
services, collectively enhancing overall grid-friendliness. In 
3 of 14
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FIGURE 2 Structure of the proposed model. 
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return, the state holder of SGLS system has the opportunity
to pay less for capacity fee. 

∙ Investment Cost : The markedly different capital costs of
wind turbines, PV generators, and energy storage, combined
with their distinct annual cost-decline trajectories, constitute
a critical economic driver. The optimization must strategically
balance installed capacities and investment timing across
technologies to minimize the net present value of the life-cycle
cost. 

∙ Load Demand : The shape and characteristics of the inter-
nal load profile play an equally important role. Industrial-
dominated loads with relatively flat daily patterns tend to pair
better with wind-rich resources for example. Consequently,
the optimal wind-PV-storage planning is highly sensitive to
both resource availability and the specific load curve of the
project. 

By explicitly incorporating these four factors, the proposed
multi-period planning model delivers a tailored, economically
optimal, and grid-friendly source-storage planning for renewable-
dominated SGLS systems. 

3 Multi-Period Source-Storage Coordinated 

Planning Model 

This section proposes a multi-period source-storage coordinated
planning model. The model accounts for the annual decreasing
trend in investment costs for renewable generation and energy
storage systems, while embedding deterministic hourly wind
power output, photovoltaic output data, and load data into
the constraints. Figure 2 illustrates the structure of proposed
model. 

As shown in Figure 2 , the proposed model adopts a classic
two-stage planning-operation framework. At the planning stage,
annual decisions are made to determine the newly added installed
capacities of wind turbines, PV generators, and energy storage
systems for each year of the project life-cycle. The operation stage
operates on an hourly basis, optimizing hourly wind and solar
output, energy storage charge/discharge power, and purchased
electricity from main grid. Through interaction between the
two stages, the model derives the capacity planning path for
wind, solar, and storage that minimizes NPV, along with the
corresponding operational plan. 
4 of 14
3.1 Objective Function 

The planning model aims to minimize the net present value
(NPV) of the total life-cycle cost while ensuring reliable operation
and grid compatibility. Under the SGLS operation model, costs
primarily consist of investment cost, operation and maintenance 
cost, purchased electricity cost, and self-declared capacity cost. 
The objective function is formulated as: 

min 
∑

𝑦∈𝑌 

1 

(1 + 𝑟)𝑦 

{
𝐶𝐼 𝑦 + 𝐶𝑂𝑀 

𝑦 + 𝐶𝐸 𝑦 + 𝐶𝐶 𝑦 
}

(1) 

where 𝑌 represents the project lifespan (in years); 𝐶𝐼 𝑦 , 𝐶𝑂𝑀 

𝑦 , 𝐶𝐸 𝑦 
and 𝐶𝐶 𝑦 represent the investment cost, operation and maintenance
cost, purchased electricity cost, and self-declared capacity cost in
year 𝑦, respectively; 𝑟 is the discount rate; 1 

(1 + 𝑟)𝑦 
is the present

value factor for year 𝑦. 

3.1.1 Investment Cost 

The investment cost accounts for the capital expenditure of
deploying new capacities each year, considering the factor of
declining investment costs: 

𝐶𝐼 𝑦 = 𝑐
𝑝𝑣 
𝑦 ⋅ Δ𝑃

𝑝𝑣 
𝑦 + 𝑐𝑤𝑖𝑛𝑑 𝑦 ⋅ Δ𝑃𝑤𝑖𝑛𝑑 𝑦 + 𝑐𝑠𝑡𝑜 𝑦 ⋅ Δ𝐸

𝑠𝑡𝑜 
𝑦 (2) 

where Δ𝑃𝑝𝑣 𝑦 , Δ𝑃𝑤𝑖𝑛𝑑 𝑦 and Δ𝐸𝑠𝑡𝑜 𝑦 denote the newly installed capaci- 
ties of PV generator, wind turbine, and energy storage in year 𝑦;
𝑐
𝑝𝑣 
𝑦 , 𝑐

𝑤𝑖𝑛𝑑 
𝑦 and 𝑐𝑠𝑡𝑜 𝑦 are the unit investment costs in year 𝑦. 

According to reports released by CREEI and IEA, the unit
cost trend for wind turbine, photovoltaic generator, and lithium
energy storage has exhibited an exponential decline over the past
decade. Therefore, the annual decline rate is employed here to
approximate the yearly changes in the investment costs per unit
for these technologies: 

𝑐
𝑝𝑣 
𝑦 = 𝑐

𝑝𝑣 

0 ⋅ (1 − 𝑑𝑝𝑣 )
𝑦 (3) 

𝑐wind 𝑦 = 𝑐wind 0 ⋅ (1 − 𝑑wind )
𝑦 (4) 

𝑐sto 𝑦 = 𝑐sto 0 ⋅ (1 − 𝑑sto )
𝑦 (5) 

where 𝑑𝑝𝑣 , 𝑑𝑤𝑖𝑛𝑑 and 𝑑𝑠𝑡𝑜 represent the annual decline rates of
investment costs for PV generator, wind turbine, and energy
storage, respectively. 

3.1.2 Operation and Maintenance Cost 

The O&M cost comprises fixed O&M costs and battery replace-
ment costs of ESS: 

𝐶𝑂𝑀 

𝑦 = 𝐶
𝑓 𝑖 𝑥𝑒𝑑 
𝑦 + 𝐶

𝑟 𝑒 𝑝 
𝑦 (6) 

𝐶
𝑓 𝑖 𝑥𝑒𝑑 
𝑦 = 𝑜 𝑚

𝑝𝑣 
𝑦 ⋅ 𝑃

𝑝𝑣 
𝑦 + 𝑜 𝑚𝑤 𝑖𝑛𝑑 

𝑦 ⋅ 𝑃𝑤𝑖𝑛𝑑 𝑦 + 𝑜 𝑚𝑠𝑡 𝑜 
𝑦 ⋅ 𝑃

𝑠𝑡𝑜 
𝑦 (7) 
IET Renewable Power Generation, 2026
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𝐶
𝑟 𝑒 𝑝 
𝑦 = 𝑟 𝑒𝑝𝑦 ⋅ Δ𝑃

𝑠𝑡𝑜 
𝑦−𝑌𝑠𝑡𝑜 (8)

where 𝑜 𝑚𝑝𝑣 
𝑦 , 𝑜 𝑚𝑤 𝑖𝑛𝑑 

𝑦 and 𝑜 𝑚𝑠𝑡 𝑜 
𝑦 are the unit fixed O&M costs;

𝑃
𝑝𝑣 
𝑦 , 𝑃

𝑤𝑖𝑛𝑑 
𝑦 𝑎 𝑛𝑑 𝑃𝑠𝑡𝑜 𝑦 are the cumulative installed capacities in year

𝑦; 𝐶𝑟 𝑒 𝑝 𝑦 is the unit battery replacement cost, which can generally
be considered a fixed proportion of the investment unit cost ESS;
Δ𝑃𝑠𝑡𝑜 

𝑦−𝑌𝑠𝑡𝑜 is the ESS capacity added in year 𝑦 − 𝑌𝑠𝑡𝑜 , with 𝑌𝑠𝑡𝑜 being
the ESS service life. 

3.1.3 Purchased Electricity Cost 

The purchased electricity cost represents the expense of purchas-
ing electricity from the main grid: 

𝐶𝐸 𝑦 =
∑

𝑡∈𝑇 

𝜋𝑡,𝑦 ⋅ 𝑝
𝑀 

𝑡,𝑦 (9)

where 𝑇 = 8760 is the total number of hours in a year, 𝜋𝑡,𝑦 is
the time-of-use (TOU) electricity price published by the local
government (typically divided into peak, flat, and valley periods),
and 𝑝𝑀 

𝑡,𝑦 is the electricity purchased from the main grid at hour 𝑡
of year 𝑦. 

By explicitly incorporating real-world TOU pricing into the
hourly operational constraints, the model naturally incentivizes
valley-period electricity procurement (when prices are lowest)
and peak-period purchased reduction (when prices are highest).
This economically driven behavior not only reduces the project’s
own electricity expenditure, but simultaneously delivers signif-
icant grid-support benefits: increased valley filling and reduced
peak downward power flow effectively smooth the net load
curve seen by the main grid, lower the system’s peak regulation
pressure, and enhance overall grid-friendliness without requiring
additional control or incentive mechanisms. 

3.1.4 Self-Declared Capacity Cost 

To ensure compatible operation and maintain a stable connection
between the SGLS system project and the main grid, the SGLS
system must declare its maximum demand capacity in a year
to the grid operator and pay the corresponding capacity fee.
This grid-friendly approach helps prevent overload at the grid
connection and ensures reliable power exchange: 

𝐶𝐶 𝑦 = 𝜋
𝑐 𝑎 𝑝 
𝑦 ⋅ 𝑀𝐷𝑦 (10)

where 𝜋𝑐 𝑎 𝑝 𝑦 is the capacity price; 𝑀𝐷𝑦 is the declared maximum
demand capacity, which represents the SGLS system project’s
commitment to not exceed this power level when purchasing
electricity from the main grid, thereby supporting grid stability
and facilitating friendly grid integration. 

3.2 Constraints for the Planning Stage 

Constraints for the planning stage impose restrictions on the
decision variables for the multi-period planning problem, which
are shown in (11)-(14): 
IET Renewable Power Generation, 2026
For each year 𝑦, the capacity expansion must be non-negative: 

Δ𝑃
pv 
𝑦 ≥ 0 , Δ𝑃wind 𝑦 ≥ 0 , Δ𝐸sto 𝑦 ≥ 0 (11) 

The cumulative capacities follow a recursive relationship: 

𝑟𝐶𝑙 𝑃
pv 
𝑦 = 𝑃

pv 

𝑦− 1 + Δ𝑃
pv 
𝑦 (12) 

𝑃wind 𝑦 = 𝑃wind 𝑦− 1 + Δ𝑃wind 𝑦 (13) 

𝐸sto 𝑦 = 𝐸sto 𝑦− 1 + Δ𝐸sto 𝑦 (14) 

with initial conditions 𝑃pv 0 , 𝑃
wind 
0 and 𝐸sto 0 = 0 

3.3 Constraints for the Operation Stage 

Constraints for the operation stage impose restrictions on the
decision variables for the operation problem, which are presented
as follows: 

For each year 𝑦 and each hour 𝑡, the following operational
constraints ensure reliable SGLS system operation: 

𝑝
𝑝𝑣 

𝑡,𝑦 + 𝑝wind 𝑡,𝑦 + 𝑝𝑠𝑡 𝑡,𝑦 + 𝑝𝑀 

𝑡,𝑦 = 𝐷𝑡,𝑦 (15) 

0 ≤ 𝑝
pv 

𝑡,𝑦 ≤ 𝜌
pv 

𝑡,𝑦 ⋅ 𝑃
pv 
𝑦 (16) 

0 ≤ 𝑝wind 𝑡,𝑦 ≤ 𝜌wind 𝑡,𝑦 ⋅ 𝑃wind 𝑦 (17) 

𝑆𝑂𝐶min ⋅ 𝐸
sto 
𝑦 ≤ 𝐸𝑡,𝑦 ≤ 𝑆𝑂𝐶max ⋅ 𝐸

sto 
𝑦 (18) 

𝑝st 𝑡,𝑦 = 𝑝dis 𝑡,𝑦 − 𝑝ch 𝑡,𝑦 (19) 

𝑟𝐶𝑙 𝑝ch 𝑡,𝑦 ≤ 𝑃sto 𝑦 (20) 

𝑝ch 𝑡,𝑦 ≤ 

𝑆𝑂𝐶max ⋅ 𝐸
sto 
𝑦 − 𝐸𝑡− 1 ,𝑦 

𝜂ch 
(21) 

𝑝ch 𝑡,𝑦 ≥ 0 (22) 

𝑝dis 𝑡,𝑦 ≤ 𝑃sto 𝑦 (23) 

𝑝dis 𝑡,𝑦 ≤ 𝜂dis ⋅ ( 𝐸𝑡− 1 ,𝑦 − 𝑆𝑂𝐶min ⋅ 𝐸
sto 
𝑦 ) (24) 

𝑝dis 𝑡,𝑦 ≥ 0 (25) 

𝐸𝑡,𝑦 = 𝐸𝑡− 1 ,𝑦 + 𝜂ch ⋅ 𝑝
ch 
𝑡,𝑦 −

𝑝dis 𝑡,𝑦 

𝜂dis 
(26) 

MD 𝑦 ≥ 𝑝𝑀 

𝑡,𝑦 (27) 

𝑝𝑀 

𝑡,𝑦 ≥ 0 (28) 

In the above formulation, Equation ( 15 ) is the power balance
constraint, where 𝑝𝑝𝑣 𝑡,𝑦 , 𝑝𝑤𝑖𝑛𝑑 𝑡,𝑦 , 𝑝𝑠𝑡𝑜 𝑡,𝑦 , 𝑝𝑀 

𝑡,𝑦 and 𝐷𝑡,𝑦 represent the pho-
tovoltaic output, wind power output, net energy storage discharge
5 of 14
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power, purchased electricity, and load power at time 𝑡 in year 𝑦,
respectively, and the load is a fixed input data; Equations ( 16 )
and ( 17 ) are the renewable generation constraint, where 𝜌𝑝𝑣 𝑡,𝑦 ⋅

𝑃
𝑝𝑣 

𝑡,𝑦 and 𝜌𝑤𝑖𝑛𝑑 𝑡,𝑦 ⋅ 𝑃𝑤𝑖𝑛𝑑 𝑡,𝑦 , respectively, denote the maximum upper
limits of available PV and wind power output at time 𝑡 in year
𝑦. These limits can be obtained by multiplying the PV capacity
factor 𝜌𝑝𝑣 𝑡,𝑦 and wind capacity factor 𝜌𝑤𝑖𝑛𝑑 𝑡,𝑦 at time 𝑡 in year 𝑦
by the installed capacity of PV and wind power, respectively.
𝜌
𝑝𝑣 

𝑡,𝑦 and 𝜌𝑤𝑖𝑛𝑑 𝑡,𝑦 represent the ratio of historical actual output data
to rated installed capacity for wind turbines and photovoltaic
generator, respectively. 

Equations ( 18 )–( 26 ) are the ESS operational constraints where 𝑝dis 𝑡,𝑦 

and 𝑝ch 𝑡,𝑦 denote the energy discharge power and energy charge
power at time t in year y , respectively; 𝑃sto 𝑦 = 𝐸sto 𝑦 ∕𝛽 denotes
the rated power of the energy storage, where 𝛽 represents the
duration of the energy storage; 𝜂ch and 𝜂dis denote the charging
and discharging efficiency of the energy storage; Equations ( 20 )–
( 22 ) are the energy storage charging constraint: charging power
is less than the rated power and the remaining chargeable
capacity; Equations ( 23 )–( 25 ) are the energy storage discharge
constraint: the discharge power must be less than the rated
power and the remaining available capacity. Equations ( 18 ) and
( 26 ) are, respectively, the SOC constraint for energy storage and
the energy balance constraint; Equations ( 27 ) and ( 28 ) are the
self-declared capacity constraints, which ensures the declared
annual maximum demand capacity 𝑀𝐷𝑦 covers the actual
maximum power drawn from the grid in this year, supporting
grid-friendly operation. 

It can be observed that the proposed model is a mixed integer
linear programming problem. It can be solved using com-
mercial or open-source optimization solvers. The multi-period
approach allows for adaptive planning that responds to changing
investment costs and operational requirements throughout the
project life-cycle. 

4 Evaluation Metrics 

This section introduces a set of metrics to measure the plan-
ning results of the proposed multi-period source-storage model,
encompassing both economic and grid friendliness. 

4.1 Cost Efficiency 

The purpose of this subsection is to quantify the optimization
effects of the model on the NPV of the full life-cycle costs,
comparing original project and optimized scenarios. 

Key indicators include: 

∙ Life-Cycle Cost Savings Ratio : This evaluates the per-
centage reduction in costs before and after optimization.

𝑁 𝑃𝑉𝑜 𝑟 𝑖 − 𝑁 𝑃𝑉𝑜 𝑝 𝑡 

𝑁𝑃𝑉𝑜 𝑟 𝑖 
× 100% (29)

where 𝑁𝑃𝑉𝑜 𝑟 𝑖 is the NPV of total cost of the original project
and 𝑁𝑃𝑉𝑜 𝑝 𝑡 is the NPV of total cost of the optimized project. 
6 of 14
∙ Self-Declared Capacity Cost Savings Ratio : This eval- 
uates the percentage reduction in costs before and after
optimization. 

𝐶𝐶 
𝑜 𝑟 𝑖 

− 𝐶𝐶 𝑜 𝑝 𝑡 

𝐶𝐶 
𝑜 𝑟 𝑖 

× 100% (30) 

where 𝐶𝐶 
𝑜 𝑟 𝑖 

ar e the capacity costs of the original project and
𝐶𝐶 𝑜 𝑝 𝑡 are the capacity costs of the optimized project. The
reduction in capacity costs indicates that the SGLS system
has decreased net peak-load and increased self-consumption 
rates. 

4.2 Grid Friendliness 

The purpose of this subsection is to evaluate grid-friendliness of
the model based on 8760 h operational data. 

Key indicators include: 

∙ Maximum Dependence Reduction Ratio (MDRR) : This 
quantifies the reduction in maximum dependence on the 
main grid after optimization, reflecting peak value reduction 
to avoid overloads. 

𝑀 𝐷𝑅𝑅 = 1 

𝑌 

∑

𝑦 

𝑀 𝐷𝑜 𝑟 𝑖 − 𝑀 𝐷𝑦 

𝑀 𝐷𝑜 𝑟 𝑖 
× 100% 

where 𝑀𝐷𝑦 is the maximum dependence power from the 
main grid in year 𝑦 in the optimized scheme, and 𝑀𝐷𝑜 𝑟 𝑖 is in
the original scheme. The maximum is taken over the year. A
higher value indicates greater grid-friendliness. 

∙ Peak Reduction Ratio (PRR) : This quantifies the model
contribution to peak shaving (reducing purchases during the 
peak load period of the main grid), helping smooth the main
grid’s load curve. 

𝑃 𝑅 𝑅 =
∑
𝑡∈𝑝 𝑒 𝑎 𝑘 

( 𝑃𝑀 

𝑡,𝑜 𝑟 𝑖 
− 𝑃𝑀 

𝑡,𝑜 𝑝 𝑡 ) 
∑
𝑡∈𝑝 𝑒 𝑎 𝑘 

𝑃𝑀 

𝑡,𝑜 𝑟 𝑖 

× 100% 

where peak is the set of peak periods which is determined by
the locally published electricity pricing periods. 

∙ Valley Filling Ratio (VFR) : This quantifies the SGLS system
contribution to valley filling (increasing purchases during the 
valley load period of the main grid), helping smooth the main
grid’s load curve. 

𝑉 𝐹 𝑅 =
∑
𝑡 ∈𝑣 𝑎𝑙 𝑙 𝑒𝑦 

( 𝑃𝑀 

𝑡,𝑜 𝑝 𝑡 − 𝑃𝑀 

𝑡,𝑜 𝑟 𝑖 
) 

∑
𝑡 ∈𝑣 𝑎𝑙 𝑙 𝑒𝑦 

𝑃𝑀 

𝑡,𝑜 𝑟 𝑖 

× 100% 

where valley is the set of valley periods which is also deter-
mined by the locally published electricity pricing periods. 

5 Case Study 

This section uses a park-level SGLS system project in Xinjiang,
China as a case study. It is equipped with 10 MW of PV generators,
350 MW of wind turbines, 60 MW/120 MWh of lithium battery
IET Renewable Power Generation, 2026
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TABLE 1 Economic parameters of SGLS project. 

Devices 
Unit investment cost 

(RMB/kW) 
O&M cost 

(RMB/kW/y) 

PV 3450 30 
Wind 4200 40 
Storage 1273* 20 

*Unit: RMB/kWh for energy storage investment cost 

TABLE 2 Technical parameters of ESS. 

Parameter Value 

Charging efficiency 95% 

Discharging efficiency 95% 

Storage duration 2 h 
SOC upper limit 100% 

SOC lower limit 0% 

Battery replacement cost (% of ES) 60% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3 Life-cycle capacity expansion under the base cost reduc- 
tion pathway. 
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energy storage, and 340 MW peak load. This project is served as
benchmark. We collect annual wind power, PV generation, and
load data for 8760 h in 2024 as input for the model. Following
local policy requirements, surplus electricity cannot be fed into
the grid, and the energy storage system cannot participate in the
ancillary service market, making it suitable for validation and
analysis using the model proposed in this paper. Currently, there
are no plans for load expansion in this project. As it does not
participate in the energy market, the real-time electricity price
is based on the local government’s publicly announced time-of-
use proxy electricity prices for January to December, and the
capacity price is 360 RMB per kWh per year. It is assumed that the
wind power and PV output characteristics, load curve, and proxy
electricity price in the project area remain the same as in 2024
throughout the entire life-cycle. The project duration is 20 years,
with a discount rate of 8%. Other economic parameters are shown
in Table 1 , and technical parameters of ESS are shown in Table 2 .
All parameters are obtained from publicly available reports and
the project. This study uses Python 3.12.4 for model development
and calls the Gurobi 12.0.2 optimization solver for the solution.
All computations are performed on a computer equipped with an
Intel Core i5-13600K processor and 32 GB of RAM. 

5.1 Optimal Planning Under Different 
Technological Cost Reduction Pathways 

This section investigates the impact of cost reduction pathway
uncertainty on life-cycle optimal planning by establishing three
distinct annual cost reduction pathways (conservative, base, and
optimistic) for photovoltaic generator, wind turbine, and energy
storage. The base pathway ( 𝑑𝑝𝑣 = 5% , 𝑑𝑤𝑖𝑛𝑑 = 4% , 𝑑𝑠𝑡𝑜 = 7% ) is
defined based on the projections of CREEI and IEA for the unit
cost of wind turbine, photovoltaic generator, and lithium energy
storage in 2030. A conservative pathway ( 𝑑𝑝𝑣 = 3 . 5% , 𝑑𝑤𝑖𝑛𝑑 =
2 . 5% , 𝑑𝑠𝑡𝑜 = 5 . 0% ) is formulated to represent potential headwinds
such as slowed technological advancement, supply chain bot-
IET Renewable Power Generation, 2026
tlenecks, and weaker policy support. Conversely, an optimistic
pathway ( 𝑑𝑝𝑣 = 6 . 5% , 𝑑𝑤𝑖𝑛𝑑 = 5 . 5% , 𝑑𝑠𝑡𝑜 = 9% ) assumes favorable
conditions like accelerated technological breakthroughs, rapid 
supply chain cost reduction, and strong policy drivers. A static
cost scenario with no reduction is also included as a benchmark.
A comparative analysis is conducted from the perspectives of
investment timing, technology portfolio, and system costs to 
evaluate the robustness of the planning strategy against techno-
logical cost uncertainty, providing insights for medium-term and 
long-term source-storage coordinated planning. 

1. Base Cost Reduction Pathway ( 𝒅𝒑𝒗 = 𝟓 % , 𝒅𝒘𝒊𝒏𝒅 = 𝟒 % ,
𝒅𝒔𝒕𝒐 = 𝟕 % ): Under the base pathway, the unit investment
costs for photovoltaic generator, wind turbine, and energy 
storage are projected to decrease to approximately 81%, 85%,
and 75% of the base-year costs by Year 5, and further to 63%,
69%, and 52% by Year 10, respectively. 
Figure 3 illustrates the resulting capacity expansion strategy. 
The capacity of the PV generator increases steadily from
Year 5 to Year 9, reaching a cumulative capacity of 83.1 MW
before stabilizing. Wind turbine investment occurs primarily 
in the base year (356.9 MW), with a minor addition in Year 2
(reaching 360.3 MW), resulting in a wind-to-PV capacity ratio
of approximately 4.3:1. Energy storage is deployed in phases
from Year 1 to Year 11, achieving a final capacity of 492.9
MWh. The initial investment in energy storage in the base
year constitutes 21.7% of the final capacity. The final storage-
to-generation power capacity ratio is about 1.1:1. No further
investments are made after Year 11. 

2. Conservative Cost Reduction Pathway ( 𝒅𝒑𝒗 = 𝟑 . 𝟓 % ,
𝒅𝒘𝒊𝒏𝒅 = 𝟐 . 𝟓 % , 𝒅𝒔𝒕𝒐 = 𝟓 . 𝟎 % ): Under the conservative pathway,
costs decrease more slowly, reaching 87%, 90%, and 81% of
base-year costs by Year 5, and 73%, 80%, and 63% by Year
10 for photovoltaic generator, wind turbine, and energy 
storage, respectively. 
As shown in Figure 4 , the capacity of the PV generator is
added gradually between Years 3 and 9, stabilizing at 50.3
MW. Capacity of wind turbine is installed almost entirely in
the base year (361.8 MW), leading to a higher wind-to-PV ratio
of 7.2:1. Energy storage is deployed in phases until Year 9,
starting with 172.4 MWh in the base year (40.9% of the final
421.6 MWh capacity), with subsequent additions in Year 4
and Year 9. The final storage-to-generation ratio is nearly 1:1.
The system stabilizes after Year 9. 
7 of 14
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FIGURE 4 Life-cycle capacity expansion under the conservative 
cost reduction pathway. 

FIGURE 5 Life-cycle capacity expansion under the optimistic cost 
reduction pathway. 
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3. Optimistic Cost Reduction Pathway ( 𝒅𝒑𝒗 = 𝟔 . 𝟓 % , 𝒅𝒘𝒊𝒏𝒅 =
𝟓 . 𝟓 % , 𝒅𝒔𝒕𝒐 = 𝟗 % ): Under the optimistic pathway, significant
cost reductions are realized, with costs falling to 76%, 80%,
and 69% by Year 5, and 55%, 60%, and 43% by Year 10. 
Figure 5 shows a more deferred and expansive investment
strategy. The capacity of the PV generator is added annually
from Year 5 to Year 11, reaching a significantly higher final
capacity of 132 MW. Wind investment occurs in the base
year (352 MW) and Year 4 (reaching 359.7 MW), resulting
in a lower wind-to-PV ratio of 2.7:1. The energy storage
deployment is phased over a longer period until Year 13,
reaching a final capacity of 584.4 MWh. Notably, only 10.3%
of the final capacity of energy storage is installed in the
base year, reflecting a strong deferral strategy. The final
storage-to-generation ratio is 1.2:1. The system stabilizes after
Year 13. 

4. Static Cost Scenario (No Reduction) : For comparison,
under the static cost assumption, the optimal strategy
involves a single, upfront investment in the first year: 15.9
MW of PV generator, 363.5 MW of wind turbine, and
249.8 MWh of energy storage. No further capacity is added
throughout the project life-cycle. 

A comparative analysis of the planning decisions under the three
dynamic pathways and the static scenario yields the following key
insights: 
8 of 14
1. The wind turbine serves as the primary generation source
across all scenarios. Investments are concentrated in the early
years, with minimal variation in final capacity (less than
0.4% difference between scenarios). This indicates that the 
planning decision for the capacity of the wind turbine is
relatively insensitive to the examined range of its own cost
reduction rates, likely due to its superior resource availability
and economic viability in this specific project context. 

2. In contrast, the capacity expansion of the PV generator
demonstrates high sensitivity to cost reduction rates. Invest-
ments are consistently deferred until at least Year 3. The final
capacity of the PV generator varies significantly: 50.3 MW
(conservative), 83.1 MW (base), and 132 MW (optimistic). This
162% increase from the conservative to the optimistic scenario
highlights PV generator’s role as a flexible resource, whose
investment timing and scale can be dynamically adjusted 
based on actual cost reduction trajectories. 

3. Energy storage capacity is highly sensitive to cost reduction
rates, both in terms of final capacity and investment phasing.
The final capacity of energy storage is 421.6 MWh (con-
servative), 492.9 MWh (base), and 584.4 MWh (optimistic),
corresponding to 102%, 111%, and 119% of the total generation
capacity, respectively. Furthermore, the share of the capacity 
of energy storage installed in the base year decreases sig-
nificantly as cost reductions become steeper (40.9%, 21.7%, 
and 10.3%, respectively), indicating a stronger tendency to 
defer investments when future costs are expected to be lower.
This phasing also aligns with the battery replacement cycle,
favoring later investments to reduce the net present cost of
replacement. 

4. The static cost scenario results in a significantly smaller
and entirely front-loaded investment (15.9 MW PV generator, 
249.8 MWh energy storage), failing to capture the flexibility
and economic potential offered by future cost reductions,
particularly for the PV generator and energy storage. This
underscores the importance of incorporating dynamic cost 
projections in long-term planning. 

5.2 Assessment of Planning Results 

This subsection will conduct an assessment of the planning
results for different scenarios outlined in the preceding subsec-
tion, based on the evaluation metrics designed in Section 4 . 

1. Life-Cycle Cost Savings Ratio : The original project 
incurred an investment cost of 1.657 billion RMB in the
base year (2024), with annual O&M costs of 0.0155 billion
RMB, annual capacity costs of 0.12 billion RMB, and annual
purchased electricity costs of 0.314 billion RMB. Based on
these figures, the total life-cycle cost NPV for the original
project is calculated to be 6.435 billion RMB (The cost of
battery replacement in the 12th year is estimated based on
the base cost reduction pathway of 7%). Figure 6 illustrates
the NPV of total costs across the five scenarios. 
As shown in Figure 6 , the optimal capacity planning derived
from the model reduces the total cost NPV by 7.54% even
under the static Cost assumption (no future cost reductions).
When technological cost reductions are incorporated, the 
IET Renewable Power Generation, 2026
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FIGURE 6 NPV of total costs in different scenarios. 

FIGURE 7 Self-declared capacity costs in different scenarios. 

TABLE 3 Grid-friendly assessments in different scenarios. 

Scenario MDRR1 PRR2 VFR3 

Static 6.2 40.3 34.1 
Conservative 9.6 50.7 38.9 
Base 10.3 53.4 37.3 
Optimistic 11.1 55.8 33.3 

1 Maximum Dependence Reduction Ratio 
2 Peak Reduction Ratio 
3 Valley Filling Ratio 
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total cost NPV savings increase to 8.38%, 9.31%, and 9.67% for
the conservative, base, and optimistic pathways, respectively,
reflecting the economic benefits of deferred investment after
accounting for cost reductions. 

2. Self-Declared Capacity Cost Savings Ratio Assessments :
The present value of the full-cycle capacity cost for the
original project is 0.12 billion RMB. Figure 7 illustrates the
capacity cost in different scenarios. 
As shown in Figure 7 , without factoring in cost reductions,
capacity costs decreased by 6.0%. When cost reductions are
taken into account, this rate increases to approximately 7.6%.
This indicates that the model can reduces the project’s own
net peak-load. 

3. Grid-Friendly Assessments : Table 3 presents the grid-
friendly assessments values of optimization results under
four distinct optimization scenarios. 
IET Renewable Power Generation, 2026
As shown in Table 3 , in the scenario without cost reduction,
the MDRR is 6.2%. Under the three cost reduction pathways,
the MDRR increases to a range of 9.6% to 11.1%, showing a
clear upward trend as costs decrease. This indicates that the
model effectively reduces maximum power dependence on 
the main grid, with greater cost reductions leading to stronger
grid autonomy. 

Even without cost reduction, the model achieves a PRR of
40.3%, demonstrating considerable inherent peak-shaving capa- 
bility. When cost reduction mechanisms are introduced, the 
PRR improves significantly from 50.7% to 55.8%, highlighting 
the model’s enhanced ability to support grid load management
during peak periods. 

Across all four scenarios, the VFR remains between 33.3% and
38.9%, confirming the model’s consistent contribution to valley 
filling. It is worth noting that the VFR does not exhibit a clear
correlation with the degree of cost reduction, suggesting that
valley filling performance is influenced more by operational 
strategies than by cost factors. 

The results underscore the strong grid-friendly performance of 
the proposed model. It contributes notably to peak shaving and
valley filling, thereby helping to flatten the load profile of the
main grid, improve operational stability, and enhance overall 
economic efficiency. This performance is intrinsically linked to 
the optimal planning pathway identified earlier, where the signif-
icant expansion of energy storage capacity enables the system to
purchase electricity extensively during the grid’s load valleys—
storing it for later use—while reducing grid purchases during
peak hours by discharging the stored energy. This operational
strategy not only minimizes electricity costs and improves the
project’s economic viability, but also supports the main grid in
alleviating congestion, balancing supply-demand fluctuations, 
and reducing the need for peak-shaving power plants, thereby
contributing to a more efficient and resilient power system. 

5.3 Optimal Capacity Planning Under Different 
Wind-Solar Resource Characteristics 

Optimal source-storage capacity coordinated planning strategies 
for SGLS system project must be tailored to local wind and solar
resource characteristics, which vary significantly across regions. 
To analyze optimal planning strategies under different wind and
solar resource conditions, while validating the adaptability of the
proposed model to diverse resource scenarios, this section utilizes
an open dataset comprising field-measured data from renewable 
power plants in China [ 25 ]. The dataset includes 15-min interval
generation and meteorological data from 2020 for six wind farms
and eight PV plants, located across North, Central, and Northwest
China, covering diverse terrains (desert, mountainous, plain) and 
climatic zones. By selecting specific combinations of wind and
PV plants with distinct resource profiles, we simulate the power
generation characteristics of regions with different resource char- 
acteristic and derive their corresponding optimal capacity plans. 
Tables 4 and 5 summarize the key operational characteristics of
the selected wind farms and PV plants, respectively. 
9 of 14
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TABLE 4 Operational characteristics of wind farms. 

Site ID Rated capacity (MW) Average power (MW) Capacity factor Hub height wind speed (m/s) 

1 99 23.4 0.24 6.4 
2 200 72.7 0.36 7.5 
3 99 18.1 0.18 4.0 
4 66 17.4 0.26 5.5 
5 36 6.7 0.19 4.7 
6 96 28.8 0.30 8.1 

TABLE 5 Operational characteristics of PV plants. 

Site ID Rated capacity (MW) Average power (MW) Capacity factor Total irradiance (W/m2 ) 

1 50 9.7 0.19 266.4 
2 130 19.6 0.15 169.6 
3 30 5.2 0.17 81.1 
4 130 16.5 0.13 150.1 
5 110 14.5 0.13 164.3 
6 35 6.4 0.18 244.1 
7 30 5.4 0.18 206.8 
8 30 4.2 0.14 163.2 

FIGURE 8 Optimal capacity plan for the PV-dominant region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9 Optimal capacity plan for the wind-dominant region. 
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Based on the capacity factors and hub-height wind speeds in
Table 4 , Wind Farms 2 and 6 are identified as resource-rich,
while Farms 3 and 5 are resource-poor. Similarly, based on
capacity factors and total irradiance in Table 5 , PV Plants 1,
6, and 7 are considered resource-rich, whereas Plants 2, 4,
and 5 are resource-poor. This classification allows us to simu-
late three typical resource endowment profiles: PV-dominant,
wind-dominant, and balanced wind-solar. The load profile and
other technical/economic parameters remain consistent with
Section 3.1 . The base cost reduction pathway ( 𝑑𝑝𝑣 = 5% , 𝑑𝑤𝑖𝑛𝑑 =
4% , 𝑑𝑠𝑡𝑜 = 7% ) is applied. 

1. PV-Dominant Region : A PV-dominant region is simulated
using resource-rich PV Plant 1 and resource-poor Wind Farm
5. The resulting optimal life-cycle capacity expansion plan is
shown in Figure 8 . 
10 of 14
As shown in Figure 8 , the optimal strategy involves an initial
investment for PV generator of 52.3 MW in the first year,
followed by gradual annual expansion, reaching a cumulative 
capacity of 291.5 MW by Year 10. The capacity of the wind
turbine is fully deployed within the first 2 years, totaling 131.1
MW, resulting in a final wind-to-PV capacity ratio of 0.45:1.
Energy storage starts with 239.6 MWh in Year 1 and expands
to 664.3 MWh by Year 9. The final storage-to-generation
power capacity ratio is 1.57:1. This high ratio is necessary
because PV generation, being the primary source, is highly
intermittent on a diurnal cycle, requiring significant energy 
storage to shift energy from daytime production to meet
evening peak load demand. 

2. Wind-Dominant Region : A wind-dominant region is sim-
ulated using resource-rich Wind Farm 2 and PV Plant 1. The
optimal plan is shown in Figure 9 . 
IET Renewable Power Generation, 2026
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FIGURE 10 Optimal capacity plan for the balanced wind-solar 
region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11 Comparison of average daily load profiles: Region A vs. 
the SGLS system project. 
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The plan for the wind-dominant region involves a substantial
upfront investment in wind turbine (379.3 MW in Year 1),
increasing to 390.3 MW by Year 3. Investment in the PV
generator is minimal and deferred until Year 7, reaching only
30.9 MW by Year 9. Energy storage is deployed in phases:
107.8 MWh in Year 1, increasing to 196.3 MWh by Year 5, and
finally reaching 424.1 MWh by Year 11, resulting in a storage-
to-generation ratio close to 1:1. This strategy resembles the
original SGLS project’s optimal plan in Section 3.1 due to the
shared wind-dominant characteristic. However, the higher
capacity factor of the simulated wind farm (0.36 vs. 0.28)
makes wind investment even more attractive, leading to
greater capacity of the wind turbine and less capacity of the
PV generator compared to the base case. 

3. Balanced Wind-Solar Region : A balanced region is simu-
lated using PV Plant 6 and Wind Farm 5, which have similar
capacity factors. The optimal plan is shown in Figure 10 . 

The strategy for the balanced region features an initial wind
turbine investment of 132.5 MW in Year 1, gradually increasing
to 160.7 MW over 3 years. Investment in PV generator begins
in Year 2 and grows annually, reaching 189.1 MW by Year
9, resulting in a near 1:1 wind-to-PV capacity ratio. Energy
storage starts at 214.8 MWh in Year 1 and expands to 543.1
MWh by Year 11. The high storage-to-generation ratio (1.55:1) is
required to manage the significant variability and intermittency
introduced by the substantial share (approx. 50%) of PV generator.
The complementary nature of wind and solar resources in this
balanced scenario allows for a diversified and resilient generation
portfolio. 

This section derived optimal capacity plans for the SGLS project
under three distinct resource characteristic. In the PV-dominant
region, the final wind-to-PV ratio was 0.45:1, necessitating a
high energy storage ratio (1.57:1) to manage the PV generator’s
intermittency. The wind-dominant region prioritized the capacity
of wind turbine with energy storage sized at approximately
100% of the generation capacity. The balanced region achieved a
nearly 1:1 wind-PV mix, also requiring significant energy storage
(1.55:1). Across all scenarios, the capacity of the wind turbine was
deployed primarily in the early years. In contrast, PV generator
and energy storage were added gradually, consistent with the
findings in Section 5.1 . 
IET Renewable Power Generation, 2026
5.4 Optimal Capacity Planning Under Different 
Load Profiles 

This section investigates how optimal capacity expansion strate-
gies vary under load profiles with distinct characteristics. The
load data are obtained from problem A of the Chinese 9th
“Electrician Cup” Mathematical Contest in Modeling, which 
provides 15-min resolution electric load records for Region A
from 1 January, 2009 to 31 December, 2014. Figure 11 compares
the average daily load profiles of Region A (2014) and the SGLS
project in Section 5.1 (2024). 

As shown in Figure 11 , in terms of load scale, the average daily
load of Region A ranges between 5000 MW and 10,000 MW,
which is representative of a provincial-level integrated load. In
contrast, the SGLS system project has an average daily load of
only 202–209 MW, with a rated load just 3.4% of that of Region
A, indicating a small park-level SGLS system project. Regarding
load pattern, Region A exhibits a typical grid load profile with
distinct morning and evening peaks, and a daily peak-to-valley
difference ratio of about 45%, reflecting the influence of social and
economic activities. Conversely, the SGLS system project shows a
reverse-peak profile: a slight valley during daytime and relatively
flat load at night, which is attributed to the utilization of low-
cost nighttime wind power. Its daily peak-to-valley difference is
only about 3.3%, indicating that this is an industrial load with
stable characteristics. 

Since Region A represents a provincial-level grid, load growth
must be considered. From 2010 to 2014, its annual load growth
rates were 11.57%, 6.25%, 3.28%, 4.08%, and 8.19%, respectively,
with an average annual growth rate of 6.67% over the 5 years.
We assume that the load of Region A continues to grow at 6.67%
per year over the next 20 years, and the shape of the added load
in each year follows the original profile. Using 2014 as the base
year, and to facilitate comparison with the park-level SGLS system
project, the load profile of Region A is scaled proportionally so
that its peak load matches the rated capacity of the project (340
MW). Wind/PV output and electricity price data in the base year
are the same as those of the SGLS system project, and all other
parameters remain consistent. The technology cost reduction 
pathway follows the base case. Figure 12 presents the optimal
capacity expansion pathway for Region A under the wind and
solar resource endowment of the SGLS system project. 
11 of 14
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FIGURE 12 Optimal capacity expansion for Region A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13 Sensitivity analysis of annual cost reduction rates on 
the NPV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 17521424, 2026, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rpg2.70189 by C

ochraneC
hina, W

iley O
nline L

ibrary on [19/02/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
Figure 12 shows that, due to continuous load growth over the
planning horizon, the cumulative installed capacities of wind
turbine, PV generator, and energy storage in Region A also
increase steadily. In the first year, 290.2 MW of wind turbine
and 242 MWh of energy storage were installed, while no PV
generator was installed. By year 13, capacities of wind turbine and
PV generator stabilize at 622.8 MW and 462.6 MW, respectively,
yielding a wind-to-PV ratio of 1.35:1. The energy storage capacity
increases from 242 MWh in the first year to 1733.9 MWh in year
16, a 616% growth. The final ratio of the capacity of energy storage
to generation capacity reaches 1.6:1. 

Compared with the optimal expansion pathway of the SGLS
system project in Section 3.1 , wind power remains the dominant
source under the Region A load profile, but the share of the
PV generator increases significantly. This is because the load
profile of Region A aligns better with the photovoltaic output
profile, which improves the utilization rate and capacity factor of
the PV generator. Moreover, the ratio of energy storage capacity
to generation capacity is about 1:1 in the original SGLS system
project, but increases to 1.64:1 under the Region A load. This
can be attributed to two factors: first, the higher daily peak-to-
valley difference (about 45%) in Region A requires greater energy
storage capacity to shave the peak load; second, the increased PV
generator penetration necessitates additional energy storage to
mitigate the variability and intermittency of solar power. 

5.5 Sensitivity Analysis 

This section conducts a sensitivity analysis on the annual cost
reduction rates of PV generator, wind turbine, and energy storage
investments in the optimization model. Based on the previously
defined base scenario, a single-factor sensitivity analysis is per-
formed: for each parameter variation, only one cost reduction
rate is altered while the other two remain fixed at their base
values, and the optimization model is re-run to systematically
evaluate its impact on the NPV of the total system cost. The
annual cost reduction rates for the three technologies vary from
0% to 15%, with a step size of 0.5%. This range covers scenarios
from technological stagnation (0%) to breakthrough progress
(15%), ensuring the comprehensiveness of the sensitivity analysis.
Figure 13 illustrates the impact of the three annual cost reduction
rates on the NPV of the total cost. 

As shown in Figure 13 , the NPV of the total cost decreases as the
annual cost reduction rates of PV generator, wind turbine, and
12 of 14
energy storage increase. In other words, faster cost reductions
lead to more significant life-cycle cost savings. Among the three
technologies, the cost reduction of energy storage has the most
pronounced impact on system economics. When its annual 
reduction rate increases from 0% to 15%, the total cost NPV
decreases from 5.945 billion RMB to 5.731 billion RMB. This
implies that for every 1% increase in the annual cost reduction rate
of energy storage, the total cost NPV is reduced by approximately
0.014 billion RMB. Moreover, starting from 0%, the total cost
NPV shows a significant linear decreasing trend with no obvious
turning point, indicating that even minor cost improvements in
energy storage technology yield immediate economic benefits. 

In contrast, wind turbine and PV generator cost reductions
exhibit clear turning points. For wind turbine, a noticeable
marginal benefit on project cost only emerges after the annual
reduction rate reaches 6%. Beyond this threshold, each 1%
increase in the cost reduction rate wind turbine reduces the total
cost NPV by about 0.015 billion RMB, with marginal benefits
increasing as the rate rises. For PV generator, cost reduction
effects become apparent only after the annual rate exceeds 3.0%.
Beyond that, each 1% increase in the cost reduction rate of the
PV generator lowers the total cost NPV by approximately 0.0135
billion RMB. 

Additionally, when the annual cost reduction rates for wind
turbine and PV generator are 0%, the total costs are 5.857
billion RMB and 5.872 billion RMB, respectively. When the cost
reduction rate of energy storage is 0%, the total cost is 5.945 billion
RMB, which is only 0.08% higher than the NPV under static costs.

In summary, reductions in energy storage costs are the primary
driver of economic performance for this park-level SGLS project.
It is recommended that SGLS projects prioritize lowering costs of
energy storage. Cost reductions of wind turbine and PV generator
only significantly improve project economics after reaching 6% 

and 3%, respectively. 

6 Conclusions 

This study develops a multi-period source-storage coordinated 
planning model for SGLS system projects, improving the eco-
nomic efficiency by leveraging the wind-solar complementarity, 
IET Renewable Power Generation, 2026
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dynamic investment cost, and self-declared capacity. The case
studies demonstrate significant practical value of the proposed
approach via three principal findings: 

1. The model achieves substantial cost reductions compared to a
real-world SGLS project, with total life-cycle costs decreasing
by 7.54%–9.67% and capacity costs decreasing by approxi-
mately 7.6%. Electricity purchasing decreases by approxi-
mately 50% in peak periods and increases by about 35% during
valley periods, with the maximum purchasing electricity
reduced by 10%, reflecting the model’s grid-friendliness.
Investment timing shows distinct patterns: deployments of
energy storage and PV generator are deferred under faster
cost declines, while investments in wind turbine remain
front-loaded due to lower cost sensitivity. 

2. Optimal capacity planning varies significantly with the char-
acteristic of the resource. PV-dominant regions require high
energy storage ratios (1.57:1) to manage intermittency, while
provincial-level loads with better solar alignment support
higher PV penetration (42.5% vs. 18.9% under industrial
loads), necessitating increased capacity of energy storage
(1.6:1 vs. 1:1). 

3. The reduction in storage investment cost emerges as the
primary factor, with each 1% annual rate reduction decreasing
the total cost by approximately 0.014 billion RMB through
a linear relationship. Investment in wind turbine and PV
exhibits threshold effects, becoming significant until exceed-
ing 6% and 3% annual reduction, respectively. 

Although the framework provides advanced planning capa-
bilities, future research should address limitations, including
impacts of climate variation, nonlinear cost reduction trajecto-
ries, uncertainty in market mechanism. 
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