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Abstract—In this letter, a set of general necessary conditions for
line congestions are established during ramping delivery, i.e., the
redispatch process for uncertainty accommodation. Mathemati-
cally, the consideration of all line flow constraints may cause the in-
tractability of the max-min problem in robust security-constrained
unit commitment and dispatch. Without solving time-consuming
linear programming (LP) problems, the lines that will not be con-
gested can be quickly identified based on the necessary conditions
and corresponding line flow constraints can be removed from the
max-min subproblem in robust approaches. A promising applica-
tion of the conditions is presented via the preprocessed max-min
problem with high computational performance.
Index Terms—Line congestion, ramping delivery, reserve, ro-

bust optimization.

I. INTRODUCTION
Due to forecasting errors, the system operator must maintain

certain reserves to accommodate the uncertainties caused by re-
newable energy sources (RES). Robust optimization approaches
considering uncertainties are studied extensively to determine
the optimal reserves. The robustness is obtained by solving a
max-min problem, where the worst uncertainty point is found.
Although the extreme point basedmethod is adopted to linearize
the nonconvex max-min problem [1], the converted mixed-in-
teger linear programming (MILP) problem is still intractable
[2], [3]. Recognizing the challenge is from line flow constraints
and inspired by [4], [5], we propose a set of necessary conditions
for identifying line congestions in this letter. The lines that will
not be congested for uncertainty accommodation can be quickly
identified based on the necessary conditions instead of relying
on experiences or heuristics. By eliminating the flow constraints
of these non-congested lines, the robust approach is effectively
accelerated.

II. CONGESTION IDENTIFICATION
Consider that the economic dispatch (ED) for unit is

given and it can be adjusted by to accommodate uncertain-
ties [3]. can also be explained as the available reserves.
Let and denote the uncertainty and load at bus , re-
spectively. Consider the uncertainty set , where

and includes
other constraints on uncertainties. is the number of buses
and . A max-min problem (W) to find the worst
uncertainty point is formulated

(1)
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where

(2)

(3)

(4)

(5)

where and are un-accommodated uncertainties (or gen-
eration and load curtailments). (2) denotes the load balance con-
straint. The net power injection in (3) is subject to the line
flow constraint (4), where and are the shift factor and
line capacity, respectively. is the set of units located at
bus . is limited by (5), where and are functions of
the ramping limits and generation capacities. The non-convex
(W) is NP-hard and generally difficult to solve.
If (4) is dropped, then the solution to (W) is trivial. The worst

uncertainty point is reached when is at the upper/lower
bound. However, if (4) is enforced, the reserves may not be de-
livered to some buses due to line congestions. Different from
the single-level problem in [4], [5], the line congestion here oc-
curs in a two-level max-min problem (W). The outer-level max-
imizes the curtailment by selecting . The inner-level min-
imizes the curtailment by determining . The congestion in
the positive direction is considered in the following context, and
the same analysis applies to the congestion in the negative di-
rection.
Theorem 1: If line is congested in the positive direction for

uncertainty accommodation, the optimal value to problem
(P1) with relaxed uncertainty set must be non-negative.

(6)

(7)

(8)

(9)

Proof: Assume the optimal point to problem (W) is .
The optimal point to the inner
problem in (W) is a function of . Denote the feasible set of
(P1) as . It can be verified .
Therefore, . So, if line is congested
in (W), (i.e. ), then holds.
If in (P1) is replaced with , the above proof is still

valid and the condition is stronger but with heavier computation
burden. By adding other line constraints in (P1), we can further
get a sufficient and necessary condition for the redundancy of
the network constraint.
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Theorem 1 is not practically useful as it is time consuming to
solve a large number of (P1). Next, a more efficient condition
equivalent to Theorem 1will be established. By introducing new
variables and , the net power
injection can be expressed as

Let denote the upper bound of . As
and , then

(10)

holds. Denote and , then
problem (P1) can be rewritten as a new problem (P2)

(P2) is equivalent to (P1), and . Once is ordered,
(P2) can be solved with complexity as shown below.
Theorem 2: If line is congested in the positive direction for

uncertainty accommodation, then the following conditions must
hold for an integer .

(11)

(12)

(13)

is the bus with the th largest shift factor for line .
Proof: is a feasible point in (P1), then (P2) is also

feasible, which means that holds and sat-
isfying (11) must exist. Consider a that satisfies (11). is ob-
tained when , ; ;

, as is in the descending
order. Hence,

. It is observed that left hand side of (12) is equal
to . So, based on Theorem 1, if line is congested in the posi-
tive direction for uncertainty accommodation, then
must hold. That is, (12) must hold.
Theorem 2 has the same identification rate as Theorem 1. The

conditions in Theorem 2 represents the necessary conditions for
identifying line flow constraints that may be binding. If the left
hand side of (12) is negative, then the corresponding line flow
constraint will not be binding.
Theorems 1 and 2 can be extended to the max-min problem

with fixed unit commitment by setting , , and
, where is the given ON/OFF indicator. They

also apply to other robust/stochastic SCUC.

III. NUMERICAL EXAMPLES

Simulations are performed for the IEEE 118-Bus system
(http://motor.ece.iit.edu/data/RSCUC/IEEE_118bus.xls) with
6000 MW peak load using Gurobi 5.6.3 on PC Intel i7 3.4 GHz.
The uncertainty interval bounds are all 10% of bus loads.

TABLE I
REMAINING LINE CONSTRAINTS (24 H, %)

TABLE II
COMPUTATION BENCHMARK FOR CONGESTION IDENTIFICATION

TABLE III
COMPUTATION BENCHMARK FOR ROBUST SCUC (24 H)

Table I shows the remaining line constraints in the nega-
tive (NEG) and positive (POS) directions that may be binding
based on the necessary conditions. Different load levels and re-
sponse times are studied. In general, over 90% line constraints
will not be binding in the max-min problem thus can be elimi-
nated. 20-min and 30-min are the response times for uncertainty
accommodation. With the increasing load and response time,
more lines may be congested. Table II presents the identifica-
tion performance with respect to different scheduling horizons.
When , the identification time based on Theorem 2
(TH2) is 0.52 seconds while that for Theorem 1 (TH1) is 30.34
seconds. Table III shows the CPU time of solving the robust
SCUC within column generation framework based on extreme
points approach [3]. The convergence tolerance is set to .
The complexity of the original problem (ORI) increases dramat-
ically with the number of uncertainties (# of Un.). When there
are 30 buses with uncertainties, the ORI cannot find the solution
within 12 hours (i.e. 43,200 seconds). The preprocessed model
(PPC), where non-binding line flow constraints based on The-
orem 2 are eliminated for the max-min subproblem, is solved
in 54 seconds. The significant reduction in computation time is
achieved by accelerating the max-min subproblem.
Theorem 1 and 2 could also have more potential applications

besides accelerating max-min problem in robust SCUC.
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