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Abstract—With increasing renewable penetration in power
systems, a lot of research efforts have been focused on how to
accommodate the uncertainties from renewables in the Security-
Constraint Unit Commitment (SCUC) problem. One of the
candidate approaches to handling uncertainties is the two-stage
Robust SCUC (RSCUC), which enables system to survive in
any scenario. The survivability is guaranteed by the solution
optimality of the max-min problem in the second stage. However,
as the non-convex max-min problem is NP-hard, it is difficult
to get the exact optimal solution in acceptable time. In this
paper, we propose a new efficient formulation which recasts
the max-min problem to a Mixed Integer Programming (MIP)
problem using Binary Expansion (BE). The upper bound of
the gap between the new MIP problem and the original max-
min problem is derived. The gap, which quantifies the solution
optimality of the max-min problem, is controllable. Two effective
acceleration techniques are proposed to improve the performance
of the MIP problem by eliminating inactive flow constraints
and decomposing time-coupled uncertainty budget constraints.
Accordingly, the computation burden of solving the max-min
problem is reduced tremendously. The simulation results for the
IEEE 118-Bus system validate and demonstrate the effectiveness
of the new BE-based solution approach to the two-stage RSCUC
and the acceleration techniques.

Index Terms—robust SCUC, max-min problem, renewables,
binary expansion, line congestion

I. INTRODUCTION

The Renewable Energy Sources (RES), such as wind and
solar, have low production cost and are free of carbon
emission. The penetration level of RES keeps climbing in
recent decades, which helps lower the energy production
cost and protect the environment. However, they also pose
major challenges to electricity markets as the RES output
cannot be predicted accurately in day ahead. In the U.S. Day-
ahead Market (DAM), the Independent System Operator (ISO)
or Regional Transmission Organization (RTO) performs the
Security-Constraint Unit Commitment (SCUC) and Economic
Dispatch (ED) to clear the market [1], [2]. In the SCUC and
ED problem, the ISO/RTO determines the unit commitment
(UC) and ED for the next day with lowest cost to supply
the forecasted load while respecting a set of constraints. The
system-wide constraints may include the load demand balance,
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transmission capacity limit, and reserve requirement. The unit-
wise constraints are normally composed of generation capacity
limits, ramping rate limits, and minimum on/off time limits
[2], [3]. The uncertainties from RESs pose new challenges for
the SCUC and ED problems in DAM, which have attracted
extensive attention in recent years [4]–[13].

The two-stage Robust SCUC (RSCUC) can accommodate
any uncertainty in the second stage according to the re-
dispatch process [8]–[10]. It exactly meets the reliability and
security requirement which is the first priority in power system
operation. Although the RSCUC is studied intensively, it has
not been widely applied in the real markets. One of the reasons
is that the max-min problem in the solution approach is NP-
hard. It should be emphasized that the largest merit of RSCUC,
robustness, is dependent on the optimality of the solution to the
max-min problem. The max-min problem is often converted
to a maximization problem according to the duality theory,
which introduces bilinear terms in the new objective function.
In the Extreme Point (EP) based solution approach, EPs are
explicitly formulated for uncertainties to linearize the bilinear
terms [8], [10]. However, the EP approach is dependent on
the availability of the closed form of the EPs. It is also
intractable when the number of the EPs is large. Researchers
also employ Outer Approximation (OA) [9] and Mountain
Climbing (MC) [11], [12], [14] to heuristically solve the max-
min problem with good computation efficiency. However, the
global optimality is not guaranteed in these approaches, which
may lead to the loss of robustness. If KKT conditions are
adopted [15], [16], a mathematical program with equilibrium
constraints (MPEC) can be established. But MPEC is notori-
ously hard to solve in practice. An alternative way is to avoid
the max-min problem. The affine policy (AP) as shown in [17]
is successfully adopted in the literature [16], [18]–[20] with
better computation performance. However, replacing the full
recourse strategy with strict AP will further deteriorate the
value of the robust solution, which is already criticized for
over-conservatism.

In this paper, we propose to solve the max-min problem
in an innovative way. Instead of enumerating the EPs of the
uncertainty set, the bilinear terms in the objective function is
linearized based on the Binary Expansion (BE) technique. The
contributions of this paper are

1) The BE approach is proposed to recast the max-min
problem in the robust optimization framework into a
mixed-integer programming (MIP) problem. The BE
solution approach does not rely on the closed form
EPs of the uncertainty set. Hence, it is still applicable
when it is hard to formulate the EPs. In particular,
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when sophisticated uncertainty sets are considered to
relieve the conservativeness, the BE approach shows
more advantages over the EP approach.

2) A closed-form upper bound of the optimality gap in the
BE approach is derived. It can be obtained directly with-
out solving any optimization problem. Furthermore, the
optimality gap can be adjusted by changing the number
of BE terms. Accordingly, the solution quality of the
max-min problem becomes observable and controllable.

3) Two acceleration techniques, bilinear term reduction and
decomposition, are applied to reduce the solution time
for the MIP problem in the BE approach. A generalized
sufficient conditions for inactive line constraints in the
max-min problem are derived and used to reduce most
of the bilinear terms. By exploring the special structure
of the max-min problem, the original time-coupled max-
min problem is decomposed into smaller time-decoupled
max-min problems. While the idea of the two acceler-
ation techniques is not new, the combined use of the
techniques along with the BE approach is novel and
makes it much more efficient to solve the max-min
subproblem, the most time-consuming step in the robust
optimization framework.

In this paper, the matrix is denoted with bold uppercase
letter, the vector with bold lowercase letter, and the scalar
with normal font letter. The rest of this paper is organized as
follows. In Section II. the RSCUC framework and the max-
min problem are introduced. Then in Section III, the BE based
approach to solving the max-min problem is proposed and the
closed form of the optimality gap is derived. In Section IV,
the two acceleration techniques to reduce the solution time
are presented. The case studies are presented with the IEEE
118-Bus system in Section V. Finally, Section VI concludes
this paper.

II. TWO-STAGE ROBUST SCUC

A. Uncertainty Set

The uncertainties in the SCUC problem are mainly due to
the forecasting errors for renewable power output and load. In
the RSCUC literature [8], [9], these uncertainties are treated
as load perturbation. The uncertainty set is modeled as

U := {(ε1, · · · , εT ) ∈ RNd × · · · × RNd :

−ut ≤ εt ≤ ut,∀t (1)
Stεt ≤ ht,∀t (2)∑
m

|εm,t|
um,t

≤ Λt,∀t (3)

∑
t

∑
m

|εm,t|
um,t

≤ Λ}, (4)

where Nd and T are the numbers of uncertain load injections
and scheduling periods, respectively, and εt represents the
uncertainty vector at time t. εm,t ∈ R is the entry in the
vector εt. Define ε = [ε>1 , · · · , ε>T ]>. The U defined in this
paper combines the uncertainty set in [9]–[11]. Eq. (1) implies
that the uncertainties are limited in intervals. The general
polytope (2) can include many potential constraints. The

single-hour budget constraint for uncertainties is formulated
in (3). The time-coupled budget constraint is formulated in
(4). The budget parameter Λt and Λ are assumed integers. By
modeling constraints (2),(3),(4), the feasible region of U can
be reduced. Consequently, the solution of the RSCUC will be
less conservative.

B. Two-stage Robust RSCUC
This paper focuses on the solution approach for the max-

min subproblem in RSCUC, We first briefly introduce a self-
contained two-stage RSCUC model. The details can be found
in [10], [16]. The RSCUC is formulated as

(P) min
(x,p)∈F

C(x, p) (5)

s.t. Ax+Bp ≤ b (6)

and

F :=
{

(x, p) : ∀ε ∈ U ,∃∆p such that

D(p+ ∆p) + Eε ≤ h (7)

Fx+Gp+H∆p ≤ g
}
. (8)

The objective (5) is to find the UC and ED solution with
the least cost, which can be immunized against any real-
ization of the uncertainty predefined in U . Binary variable
vector x denotes the UC variables. p ∈ RNGNT denotes the
ED variables, respectively. NG is the number of generators.
A,B,D,E, F,G, and H are abstract matrices for repre-
senting constraints. Particularly, E ∈ RNs×NdNT where Ns
is the number of rows in (7). Equation (6) represents UC and
network constraint for the base-case scenario. ∆p ∈ RNGNT
stands for the generation adjustment for uncertainty accom-
modation. The re-dispatch process respects the system-wide
constraints in (7) as well as the unit-wise constraint (8).

Similar to [10], the Column Generation (CG) in [15] is
adopted to solve the RSCUC. The master problem (MP) and
the subproblem (SP) are established as follows.

(MP) min
(x,p)

C(x, p)

s.t. Ax+Bp ≤ b

D(p+ ∆pw) ≤ h− Eε̂w,∀w ∈ W (9a)
Fx+Gp+H∆pw ≤ g,∀w ∈ W (9b)

and

(SP) φ := max
ε∈U

min
(s,∆p)∈R(ε)

1>s (10a)

R(ε) :=
{

(s,∆p) : s ≥ 0 (10b)

D∆p− s ≤ h−Dp− Eε (10c)

H∆p ≤ g − Fx−Gp
}

(10d)

where W is the index set for uncertainty points ε̂ which are
dynamically generated in (SP) during the solution procedure
as described in Algorithm 1. The detailed formulation of R(ε)
can be found in Appendix A.

In fact, (MP) is similar to the scenario-based Stochastic
SCUC (SSCUC). It is noted that both (MP) and (SP) are NP-
hard problems [21], [22]. In particular, it is difficult to get the
exact optimal solution to the max-min problem (SP).
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Algorithm 1 Column Generation Procedure to Solve (P)

1: W ← ∅, w ← 1, φ← +∞, define feasibility tolerance δ
2: while φ ≥ δ do
3: Solve (MP), obtain optimal (x̂, p̂).
4: Solve (SP) with x = x̂, p = p̂, get solution (φ, ε̂w)
5: W ←W ∪ w,w ← w + 1
6: end while

III. A MIP REFORMULATION FOR MAX-MIN PROBLEM

The max-min problem (SP) is converted to a maximization
problem based on duality theory [8], [9], [16]. The converted
bilinear maximization problem (BP) is formulated as

(BP) φ = max
ε∈U,λ,µ

−λ>h̃+ λ>Eε− µ>g̃ (11)

s.t. D>λ+H>µ = 0 (12)
0 ≤ λ ≤ 1, µ ≥ 0, (13)

where h̃ := h−Dp and g̃ := g − Fx−Gp. Due to the
quadratic term λ>Eε in the objective function (11), (BP) is
hard to solve.

In this paper, the Binary Expansion (BE) is used to linearize
the bilinear term λ>Eε [23]. The basic idea of the BE is
originated from the conversion from a decimal number to a
binary number. An integer in the decimal number system can
be equivalently converted to a number in the binary number
system. Consider an entry λi in vector λ. As λi ∈ [0, 1],

2Kλi ≈
K∑
k′=0

2k
′
zi,k′ ,

where K is an integer and zi,k ∈ {0, 1},∀k. Hence, we get λi ≈
K∑
k=0

2−kzi,k,∀i, (14)

zi,k ∈ {0, 1},∀i, k. (15)

With the BE technique, we have the following theorem to
solve (BP).

Theorem 1. Introduce auxiliary parameter
¯
q ∈ RNs , q̄ ∈

RNs ,

¯
qi = min

ε∈U
Eiε, q̄i = max

ε∈U
Eiε−

¯
qi. (16)

The problem (BP) is approximated as

(RP) φa(K)= max
ε∈U,λ,µ

Ns∑
i

K∑
k=0

2−kξi,k + λ>(
¯
q − h̃)− µ>g̃

s.t. D>λ+H>µ = 0
K∑
k=0

2−kzi,k ≤ λi ≤
K∑
k=0

2−kzi,k + 2−K (17)

q = Eε−
¯
q (18)

0 ≤ λ ≤ 1, µ ≥ 0

ξi,k ≤ qi, ξi,k ≤ q̄izi,k, ∀i, k
zi,k ∈ {0, 1},∀i, k,

where K is a given integer.

The proof of Theorem 1 is given in Appendix B. Ei denotes
the ith row in E. Theorem 1 presents an alternative method
to the solution of the bilinear problem. Notice a relaxed U in
(16) is the box constraint (1). In this case, the closed forms of

¯
q and q̄ are available and all the principles are still applicable.
The closed forms are

¯
qi = E−i u−E

+
i u, q̄i = 2E+

i u− 2E−i u, (19)

where u is the non-negative bound vector of the uncertainty.
E−i and E+

i are

E−i =
(
Ei − abs(Ei)

)
/2, E+

i =
(
Ei + abs(Ei)

)
/2,

where abs(·) is a vector whose elements are the absolute
values of the elements in ·. The process of determining of q̄
and

¯
q is as follows.

1: Formulate matrix E.
2: for i = 1 to Ns do
3: Generate E+

i and E−i
4: Get q̄i and

¯
qi according to (19)

5: end for
We have the following theorem regarding the solution quality.

Theorem 2. The gap between problem (BP) and (RP) follows

|φ− φa(K)| ≤ 2−K
Ns∑
i

q̄i, (20)

where φ is the optimal value to (BP) and φa(K) is the optimal
value to (RP) given K.

The proof of Theorem 2 is given in Appendix B. Theorem 2
shows that the solution quality, which is represented by the
gap, is observable and controllable. The gap is observable
as it is always smaller than 2−K

∑Ns
i q̄i. The upper bound in

Theorem 2 can be determined directly by (19) without solving
(RP) or (BP). The gap is controllable as it can be adjusted by
the parameter K. By increasing K, the gap can be lowered.
Based on Theorem 1 and 2, (BP) can be approximately solved
by (RP) with a controllable gap. Compared to the EP approach
[8], the BE approach can also handle other uncertainty sets
whose EPs are hard to model or even do not exist. In fact, the
MC and OA approaches can also approximately solve (BP) [9],
[11]. A major advantage of the EP approach is that its solution
quality is observable and controllable while the optimality of
MC and OA approach is unknown.

IV. ACCELERATION TECHNIQUES

The large number of rows in E leads to heavy computa-
tion burden in the MIP problem (RP). In this section, two
effective acceleration techniques are proposed to reduce the
computation burden. The first acceleration technique, which
is also applicable to other approaches, is derived based on
a sufficient condition to reduce inactive network constraints.
The second technique is proposed by exploring the special
structure of the max-min problem. We decompose the original
time-coupled max-min problem into smaller time-decoupled
problems at each hour.
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A. Reduction of Bilinear Terms

The bilinear term λ>Eε is derived from the load balance
constraints and network capacity limits. If the number of
transmission lines is NL, then there are 2 × NL × NT line
constraints modeled in the max-min problem. Consequently,
these system-wide constraints lead to a large number of integer
variables, which increases the problem size of (RP). Next, we
show that only part of them will remain after the reduction of
bilinear terms based on the sufficient conditions for inactive
constraints.

The strategy is to identify the inactive line constraints and
eliminate them from (SP). However, the identification is made
more complicated due to the slack variables in R(ε). The non-
negative s in (44) in Appendix A may cause a large number
of line constraints in (SP) to become non-redundant. In order
to address this issue, consider

R′(ε) :=
{

(∆p, sL+ , sL−) : sL+ , sL− ≥ 0,∑
g

(pg,t + ∆pg,t) =
∑
m

(dm,t + εm,t) ,∀t (21)

(45), (46), (47)
}
.

Compared to R(ε) in Appendix A, (21) does not include
slack variables in the load balance constraint. Then a new
subproblem (USP)

(USP)φu := max
ε∈U

min
(s,∆p)∈R′(ε)

1>s (22)

can be formulated. As there is no slack variable in (21), the
following sufficient conditions are established to identify the
inactive line constraints based on [24].

Theorem 3. Consider the net power injection pinj
m,t ∈

[
¯
pinj
m,t, p̄

inj
m,t] on bus m at time t, and introduce auxiliary

variable pinj+
m,t = pinj

m,t −
¯
pinj
m,t

0 ≤ pinj+
m,t ≤ p̄

inj+
m,t = p̄inj

m,t −
¯
pinj
m,t,∀m, t. (23)

Denote pvt
t = −

∑
m

¯
pinj
m,t, and f vt

l,t =
∑Nd
m=1 Γl,m

¯
pinj
m,t. If there

exists an integer j ∈ [1, Nd] so that

j−1∑
n=1

p̄inj+
mn,t ≤ p

vt
t ≤

j∑
n=1

p̄inj+
mn (24)

j−1∑
n=1

(Γl,mn − Γl,mj )p̄
inj+
mn,t + Γl,mjp

vt
t + f vt

l,t ≤ Fl (25)

Γl,m1 ≥ Γl,m2 ≥ · · · ≥ Γl,mNd (26)

holds, then the flow constraint for line l (with a capacity of
Fl) in the positive direction at t is inactive. mn is the bus with
the nth largest shift factor Γl,mn for line l.

The proof of Theorem 3 is shown in Appendix C. Theorem
3 is a generalized and extended work inspired by [25]. The
main differences are that Theorem 3 is established for max-
min problems considering uncertainties and it can be applied to
other bi-level problems. In [25], the search for the upper/lower
bound of the power flow is finished when the sum of the
generator capacities is larger than the constant load demand.

Algorithm 2 Solve (P) with Elimination Techniques

1: W ← ∅, w ← 1, φ← +∞, define feasibility tolerance δ
2: while φ ≥ δ do
3: Solve (MP), obtain optimal (x̂, p̂).
4: Update matrix E by applying conditions in Theorem 3
5: Solve (RP) with x = x̂, p = p̂, get solution (φ, ε̂w)
6: W ←W ∪ w,w ← w + 1
7: end while

In the max-min problem, the load demand is not constant
anymore. Instead, it is a variable. In Theorem 3, a key task
is to find the tight enough lower and upper bounds for net
power injection. Fortunately, given p, the closed forms of p̄inj

m,t

and
¯
pinj
m,t can be obtained according to ramping limits and

generation capacities that limit ∆p and the box constraint for
ε. They are

p̄inj
m,t =

∑
g∈G(m)

(
pg,t + r̄g,t(x, p)

)
− dm,t + um,t,∀m, t

¯
pinj
m,t =

∑
g∈G(m)

(
pg,t +

¯
rg,t(x, p)

)
− dm,t − um,t,∀m, t

where r̄g,t(x, p) and
¯
rg,t(x, p) are the upper bound and lower

bound of ∆pg,t. They are the functions of given UC and ED
as well as unit ramping rates and generation capacities.

By applying Theorem 3, matrix E can be significantly
reduced. Consequently, unnecessary binary decision variables
and constraints in (RP) are also eliminated. Once the shift
factors are ordered, the computation complexity is O(Nd) in
Theorem 3. The new procedure to solve (P) is presented in
Algorithm 2.

The expense of replacing R with R′ is that the dual
variables for load balance constraints become unbounded.
However, in Algorithm 2, 0 ≤ λ ≤ 1 is still used in (RP). The
following proposition shows that it will not alter the converged
solution to (P).

Proposition 1. The optimal value φu to (USP) is an upper
bound of the optimal value φ to (SP) or (BP), i.e. φu ≥ φ.
Given the optimal (x∗, p∗) to (P), then φu = φ, and optimal
solution (λ∗, µ∗) to (BP) is also the optimal dual variables to
the inner-level minimization problem in (USP).

The proof of Proposition 1 is given in Appendix E. Propo-
sition 1 shows that if the procedure in Algorithm 2 has not
converged at iteration w, ε̂w may not be the worst point.
Fortunately, ε̂w is guaranteed to be the worst point if the
procedure converges at iteration w. Therefore, the robustness
is also guaranteed. Accordingly, (25) can be replaced with

j−1∑
n=1

(Γl,mn−Γl,mj )p̄
inj+
mn,t+Γl,m1

δ+Γl,mjp
vt
t +f vt

l,t ≤ Fl (27)

in Theorem 3 when feasibility tolerance δ, which is a metric
for the solution robustness, is considered.

The BE and inactive constraint identification contribute to
the performance improvement together. In the proposed BE
approach, the inactive constraint identification helps eliminate
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the bilinear terms whose optimal values are zero. Conse-
quently, the number of binary variables and related constraints
are dramatically reduced in (RP), and the performance is
improved.

B. Decomposition of Time-coupled Budget Constraints

In this subsection, a model dependent decomposition tech-
nique is proposed by exploring the special structure of (SP).
As (x, p) is given in the master problem, the re-dispatch
variable ∆p and slack variable s are time decoupled. The
only time-coupled variable is ε due to the constraints (4). In
the following, a technique is proposed to handle the time-
coupled budget constraints. We illustrate the technique with
(SP), which is also applicable in Algorithm 2.

Consider an uncertainty set at hour t

Vt(vt) :=
{
εt ∈ RNd : (1), (2),∑
m

|εm,t|
um,t

≤ vt
}
. (28)

Then a new max-min problem at hour t can be formulated as

φt(vt) := max
εt∈Vt(vt)

min
(st,p̂t)∈Rt(ε)

1>st (29a)

Rt(ε) :=
{

(st,∆pt) : st ≥ 0 (29b)

Dt∆pt − st ≤ ht −Dtpt − Etεt (29c)

Ht∆pt ≤ gt − Ftxt −Gtpt

}
(29d)

where subscript t denotes the parameters or variables associ-
ated with hour t. It is observed that budget parameter vt is
used in the above max-min problem. We have the following
proposition regarding vt and the solution to (SP).

Proposition 2. Consider the problem

(IP) : φIP :=max
vt,∀t

∑
t

φt(vt) (30)

s.t.
∑
t

vt ≤ Λ, vt ≤ Λt, vt ∈ Z+, (31)

φIP = φ holds. Denote the optimal solution to (IP) as v∗t ,∀t.
Given v∗t , the solution εt(v∗t ) to problem (29a) is a sub-vector
of optimal solution ε∗ to problem (SP) at t.

The proof of Proposition 2 is given in Appendix 2. With the
values φt(vt) obtained by solving (29a), (IP) can be casted as
an MIP problem or simply an ordering problem, which can
be solved efficiently. In fact, all the subproblems (29a) with
different vt at various time intervals can be solved in parallel.
Moreover, we also design an efficient sequential algorithm to
solve the problem (IP). It is presented in Algorithm 3. Its
computation complexity is analyzed by counting the max-min
subproblems as follows.

Theorem 4. There are at most 2T +
∑
t Λt − Λ max-min

problem (29a) to be solved.

Algorithm 3 Algorithm to Solve Problem (IP)

1: φIP ← 0
2: for t = 1 to T do
3: Solve (29a) with vt = Λt
4: φIP ← φIP + φt(vt)
5: end for
6: while

∑
t vt > Λ do

7: for t = 1 to T do
8: if φt − 1 ≥ 0 and φt(vt − 1) is not available then
9: Calculate φt(vt − 1) by solving (29a)

10: ∆t = φt(vt)− φt(vt − 1)
11: end if
12: end for
13: vt ← vt − 1, where t is the index of the minimum one

with vt ≥ 1 in {∆1, · · · ,∆T }
14: φIP ← φIP −∆t

15: end while
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Fig. 1. Load Demand Profile in 24 Hours

V. CASE STUDY

The proposed solution approach to solve the max-min prob-
lem is tested in the IEEE 118-Bus system (http://motor.ece.iit.
edu/Data/ROSCUC 118.xls). The experiments are performed
on PC with Intel i7-3770@3.40GHz. Gurobi 5.6.3 is utilized
to solve the MIP problem [26]. The MIPGap is set as 0.001
and TimeLimit is set as 400 seconds for Gurobi. The system
consists of 54 units and 186 transmission lines. The load
profile is illustrated in Fig. 1. It is assumed that uncertainties
exist at 50 buses. um,t, an entry in ut, is set as 10% of the
load at bus m. Three groups of case studies are performed.

1) We validate the effectiveness of the proposed BE ap-
proach in handling a group of uncertainty sets.

2) We compare the computation performance and solution
quality of the proposed BE approach with those of the
EP approach [8], [10] and MC approach [11], [12].

3) We demonstrate the performance of the proposed accel-
eration techniques.

A. Effectiveness Validation of BE Approach

The IEEE 118-bus system is composed of 3 zones. The
bus set in each zone is denoted as Zn. In this subsection, we
assume the total uncertainties in a zone respects

Lzn,t ≤
∑
m∈Zn

εm,t ≤ Uzn,t,∀n, t. (32)
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TABLE I
OPTIMALITY GAPS V.S. INCREASING K

K Gap (MW) VioWorst (MW) AverageCPUTimeRP (s)

10 18 0.078 9.1
20 0.018 0.0 27.6
30 0.000018 0.0 31.9

α = 1,Λt = 30,Λ = 720
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1.986
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Fig. 2. Operation Cost and UCs v.s. Λt (α = 1,Λ =
∑

t Λt,K = 20)

For simplicity, Lzn,t and Uzn,t are parameterized with α, i.e.
Lzn,t = −α

∑
m∈Zn um,t and Uzn,t = α

∑
m∈Zn um,t. If α =

1, then (32) becomes inactive. It is noted that constraint (2) is
general enough to model other linear constraints.

The procedure presented in Algorithm 2 converges in 8 iter-
ations. The simulation results with different budget parameters
Λt are shown in Fig. 2. The curve for the base-case cost is
drawn with respect to different Λt in Fig. 2a. It is observed
that the base-case cost is also low when Λt is small. With the
increase of Λt, the base case cost is also ramping up. The UC
hours, the sum of all committed unit hours, are depicted in
Fig. 2b. When Λt = 20, around 720 UC hours are scheduled.
The largest UC hours (around 748) happens when Λt is 50.
It indicates that when the budget parameter is large, more
reserves are required to maintain the solution robustness.

Fig. 3 presents the simulations with different α. Parameter
α reflects the zonal confidence level for the uncertainty. The
time-coupled budget parameter Λ is also set to 360. It can be
observed that the base-case cost increases monotonically with
α. When α = 0.2, the cost is the lowest (around $1,982,000).
When α = 0.8, the cost increases to around $1,986,000. The
UC hours depicted in Fig. 3b show a similar trend with α.

In fact, when the parameter Λt or α increases, the uncer-
tainty set U is also enlarged. The experiments show that a
larger uncertainty set leads to a more conservative solution to
RSCUC in terms of the base-case costs and UC hours. Note
that adding stronger constraints based on the historical data
in U is preferred in RSCUC to reduce the conservativeness.
The BE approach does not rely on the EPs of U to add
constraints, which is one advantage of the BE approach over
the EP approach.

Table I shows how the optimality gap is controlled by
K based on Theorem 2. The upper bound of the gap,
“Gap”, decreases with K. The computation burden “Aver-
ageCPUTimeRP”, which is the average CPU time of solv-
ing (RP) when the reduction technique is applied, normally
increases with K in Gurobi. Column “VioWorst” shows the
constraint violation in the worst-case scenario. It can be
observed that the actual violation is much smaller than the
upper bound of the gap.
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Fig. 3. Operation Cost and UCs v.s. α (Λt = 30,Λ = 360,K = 20)

TABLE II
BE V.S. MC AND EP

Approach BaseCost ($) VioWorst (MW) TotalCPUTime (s)

BE 1,987,255 0.0 144
MC 1,987,041 35 40
EP 1,987,250 0.0 2,653

α = 1,Λt = 30,Λ = 600, K = 20
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Fig. 4. Constraint Violation in the Worst Scenario (α = 1)

B. Comparison with Other Approaches

In this part, the solution quality and performance of the
BE approach are compared with those of the EP approach
and MC approach [11], [12]. The optimality gap of the max-
min problem is in fact also the solution robustness of the
solution to RSCUC. The advantage of the MC approach is
that only LP problems are solved to find the solution to
the max-min problem. However, the solution is only locally
optimal. In contrast, the EP approach and the BE approach
can find the “globally” optimal solution with a known gap.
We set the feasibility tolerance or the robustness tolerance
δ = 0.01 and the parameter used to control the optimality of
the BE approach K = 20. Two cases are simulated for the
three solution approaches, with the acceleration techniques in
Section IV-A applied in all three approaches.

1) α = 1. Constraint (32) becomes inactive. All three
solution approaches are tested.

2) α = 0.5. It becomes more complicated for the EP
approach to handle the uncertainty set. For simplicity,
only the BE approach and MC approach are tested.

1) α = 1: Table II shows the experiment results. “BaseC-
ost” shows the base-case cost. It can be observed that the
optimal value obtained by the BE or EP approach is around
$214 higher than that obtained by the MC approach. In terms
of the base-case cost, it seems that the solution from the MC
approach is better than those from the BE or EP approach.
However, the fact is that some worst points are missed in
the MC approach, as shown in column “VioWorst”, which
represents the constraint violation in the worst-case scenario.
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TABLE III
BE V.S. MC

Approach BaseCost ($) VioWorst (MW) TotalCPUTime (s)

BE 1,983,823 0.0 61
MC 1,983,444 62 14

α = 0.5,Λt = 30,Λ = 600, K = 20
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Fig. 5. Constraint Violation in the Worst Scenario (α = 0.5)

The value in “VioWorst” is obtained by solving another max-
min problem using the EP approach given the UC and ED
solutions from the BE and MC approach. It is observed that
the solution from the MC approach is not robust. In the worst-
case scenario, the constraint violation is 35MW. The detailed
values for the hourly constraint violations are depicted in
Fig. 4. Fig. 4 shows that the constraint violations occur at Hour
9, 10, 13, 17, 19, 20, and 21. The largest violation 10MW
happens at Hour 21. The total solution time for RSCUC in
column “TotalCPUTime” verifies the computational advantage
of the MC approach. The EP approach has the largest com-
putation burden although its solution is exact. It should be
pointed out that the computation burden of the EP approach
is related to the number of the EPs. When there are only
30 buses with uncertainties in the system, the EP approach
can find the solution in less than 200 seconds. In the EP
approach, Theorem 3 eliminates the redundant constraints, but
the number of the binary variables remains the same after the
elimination. In the BE approach, Theorem 3 reduces the binary
variables and eliminates the related constraints. The proposed
BE approach shows a good trade-off between the robustness
and the computation burden according to the data in Table II.

2) α = 0.5: Table III and Fig. 5 depict the simulation
results. Compared with the uncertainty set when α = 1, the
size of the uncertainty set in this part is reduced. Therefore,
the base-case costs in Table III are lower than those in
Table II. It can also be observed in Table III that the base-
case cost obtained from the BE approach is higher than that
from the MC approach, although the difference ($379 =
1, 983, 823−1, 983, 444) is relatively small. However, the data
in “VioWorst” shows that the BE approach is much better than
the MC approach in terms of solution robustness. In the worst-
case scenario, the total constraint violation of the MC approach
is about 62MW. It is observed that the constraint violations are
large at Hour 10-13, and 19-21, when the load demands are
high.

The data in Table II and Table III show that the solution
robustnesses can be significantly different even if the operation
costs are close. This indicates the criticality of the solution

TABLE IV
ACCELERATION PERFORMANCE

Decomposition Reduction TotalCPUTime (s) Obj ($)

No No NaN NaN
Yes No 4,799 1,983,909
No Yes 197 1,983,879
Yes Yes 61 1,983,823

α = 0.5,Λt = 30,Λ = 600, K = 20
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Fig. 6. Additional Load Demand Profiles in 24 Hours

optimality of the max-min problem. The fact that the solution
from the MC approach fails to survive in the worst-case sce-
nario is also consistent with the analysis in the first paragraph
in this subsection.

C. Performance of Reformulation and Acceleration

In this part, we present the performance of the proposed
reformulation and the two acceleration techniques introduced
in Section IV. For the IEEE 118-bus system, there are
8, 928 = 186 × 2 × 24 network constraints and 24 equality
constraints for load balance. When K is set as 20, we need to
model 179, 040 binary variable z in the original (RP) shown
in Section III. The decomposition technique in Section IV-B
breaks the single time-coupled large max-min problem into
a series of smaller problems, one for each time interval.
Theorem 3 can remove about 95% inactive network constraints
in the inner minimization problem of the max-min problem.

Table IV shows the different computation performances
when we apply the acceleration techniques. Column “Total-
CPUTime” presents the total CPU time when the procedure
is converged. Column “Obj” shows the base-case operation
cost. There are small cost differences, which are within $100.
It can be observed that no solution is found within the given
time limit if we do not apply any acceleration techniques.
Specifically, the MIP solver cannot get any feasible solution
to problem (RP) within 400 seconds. With the decomposition
technique only, the solution is found in 4,799 seconds after
solving multiple MIP problems. With the reduction technique
only, the solution time is reduced significantly to 197 seconds.
The best performance (a solution time of 61 seconds) is
achieved while applying both acceleration techniques. It is
observed that in the max-min problem, the network constraint
is the main factor leading to computation complexity.

The computational complexity is also dependent on the
load profiles. Hence, additional simulations are performed
with winter and summer load profiles from https://www.ee.
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TABLE VI
NUMERICAL INFORMATION FOR THE MIP MODELS

Decomposition Reduction BE BE (Presolved) EP (Presolved)

# of Cons. # of Var. # of Bin. # of Cons. # of Var. # of Bin. # of Cons. # of Var. # of Bin.

No No 389,160 381,696 178,080 345,974 345,879 162,816 9,744 19,222 2,400
Yes No 16,215 15,904 7,420 14,401 14,398 6,784 406 764 100
No Yes 10,803 20,937 2,100 7,324 7,279 2,019 9,276 10,026 2,400
Yes Yes 606 1,021 160 457 454 153 403 486 100

# of Cons. : Number of Constraints;
# of Var. : Number of Continuous Variables and Binary Variables;
# of Bin. : Number of Binary Variables.

TABLE V
AVERAGE CPU TIME OF SOLVING ONE MAX-MIN PROBLEM

Decomposition Reduction Winter Profile Summer Profile

BE (s) EP (s) BE (s) EP (s)

No No 2912 3600 1215 3600
Yes No 40.1 3562 31.5 3600
No Yes 13.2 3575 10.68 3600
Yes Yes 0.71 304.10 0.62 512.32

α = 1,Λt = 30,Λ = 720, K = 20

washington.edu/research/pstca/rts/rts96/Table-04.txt. The load
curves are illustrated in Fig. 6. The TimeLimit for Gurobi
is changed to 3600 seconds. Table V presents the average
CPU time of solving one max-min problem. Theorem 3 can
still eliminate over 95% line constraints. The solution process
generally converges after up to 5 iterations using Algorithm 2,
and in each iteration either one multi-period max-min problem
or multiple single-period max-min problems should be solved.

In general, the CPU time has the same trend in the winter
and summer load profiles. Table V shows that it is the most
efficient to solve the single-period max-min problem with
the reduction technique. In the BE approach, the average
computation time is less than one second. With the reduction
technique, the BE approach can also solve the multi-period
max-min problem within 14 seconds on average. It is ob-
served that applying decomposition technique leads to slightly
longer average solution time in each iteration with the winter
profile, i.e. 0.71 × 24 = 17.04 > 13.2. The bottom line is
that it provides an option for the high-performance parallel
computing, which is especially important when the size of the
NP-hard problem is large. In the EP approach, the MIP solver
often stops when the time limit is reached. The EP approach
has much heavier computational burden than the BE approach
according to Table V. In the winter case, the average CPU time
is 304.1 seconds for solving a single-period max-min problem
in the EP approach. It is 434 times that in the BE approach. In
summary, the data in Table V suggests that the BE approach
becomes powerful with the acceleration techniques. It also
indicates that the acceleration techniques are more useful in
the BE approach.

Table VI shows the numerical information for the typical
MIP models in the two approaches. The Gurobi MIP solver can
reduce the problem size by presolving the MIP problem. The
information of the presolved model is also listed in the column
“BE (Presolved)” and “EP (Presolved)”. It can be observed

that 178,080 variables are originally modeled in the BE
approach. It is noted that 178,080 is smaller than 179, 040 =
(186×2 + 1)×24. The reason is that the shift factors for one
line are all zeros with respect to the buses with uncertainties. In
the presolved model, the number of binary variables is reduced
by 15, 264 = 178, 080 − 162, 816 and the number of con-
straints is reduced by 43, 186 = 389, 160− 345, 974. The de-
composition technique alone can reduce the number of binary
variables to 4.17% (i.e. 4.17%=6,784/162,816). The reduction
technique alone can reduce the number of binary variables to
1.24% (i.e. 1.24%=2,019/162,816). Both decomposition and
reduction techniques together can reduce the number of binary
variables to 0.094% (i.e. 0.094%=153/162,816). It can be
observed that both acceleration techniques can significantly
reduce the size of the MIP model in the BE approach. In
contrast, the reduction technique in the EP approach can only
reduce the numbers of constraints and continuous variables.
The number of binary variables remains 2,400 when the
reduction technique is applied in the EP approach.

The performance of the MIP solver is not only related to the
problem size, but also to the model itself. As shown in the last
row of Table VI, the MIP models in the BE approach and the
EP approach have similar sizes (i.e. around 400 constraints and
500 variables) when the two acceleration techniques are ap-
plied. However, the MIP solver has much better computational
performance in the BE approach than that in the EP approach
according to Table V. If only the decomposition technique is
applied, the presolved MIP model has 14,401 constraints and
6,784 binary variables in the BE approach, which is much
larger than the MIP model with 406 constraints and 100 binary
variables in the EP approach. But the average solution time
in the BE approach is still much less than that in the EP
approach according to Table V. These observations indicate
that the MIP solver has better computational performance for
the models in the BE approach. It suggests that the cutting
plane technique and other techniques in the modern MIP solver
are more effective for the proposed model.

VI. CONCLUSION

In this paper, a novel BE approach to solve the max-min
problem is proposed in the RSCUC framework. The non-
convex max-min problem is reformulated as a MIP problem.
The new reformulation is not dependent on the closed forms
for the extreme points in uncertainty set. The solution quality
of the max-min problem is observable and controllable in the
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proposed BE approach. To reduce the computation burden,
two effective acceleration techniques are also proposed in this
paper. The effectiveness and advantages are demonstrated in
the case study with IEEE 118-Bus system.

The NP-hard max-min problem in the robust SCUC frame-
work is notoriously hard to solve. The global optimality of
the max-min problem is the most essential part in RSCUC
because it represents the solution robustness. The BE approach
proposed in this paper shows the good performance in the
optimality as well the computation time. Furthermore, it is
applicable when other uncertainty sets are adopted. It will be
useful in the data-driven RSCUC which tries to overcome
the conservativeness issue. If RSCUC is used for market
clearing, the controllable and observable solution quality in the
proposed BE approach has important implications, as different
solutions may lead to various prices. It is an important future
work.

It is also possible to further improve the computation
performance with a hybrid solution approach combined with
BE and MC/OA. The BE approach can be applied to check
the global optimality and generate the new worst point after
the RSCUC solution is converged with the MC/OA approach.
The solution from the BE approach can also serve as a starting
point in the MC/OA approach.

Another future work is to test the proposed BE approach
on large-scale systems. Based on the results of a preliminary
simulation study with the ISO-scale Polish system [27], the
proposed BE approach is still tractable for solving the max-
min problem. We also plan to work with several ISOs in the
U.S. to test the proposed BE approach using the real data of
their systems.

APPENDIX A
DETAILED FORMULATION OF (P) AND R(ε)

min
(y,z,I,p)∈F

∑
t

∑
g

C(pg,t, Ig,t) (33)

s.t
∑
g

pg,t =
∑
m

dm,t,∀t (34)

−Fl ≤
∑
m

Γl,m

( ∑
g∈G(m)

pg,t − dm,t
)
≤ Fl,∀l, t (35)

Ig,tp
min
g ≤ pg,t ≤ Ig,tpmax

g ,∀g, t (36)

pg,t − pg,(t−1) ≤ rug (1− yg,t) + pmin
g yg,t,∀g, t (37)

−pg,t + pg,(t−1) ≤ rdg(1− zg,t) + pmin
g zg,t,∀g, t (38)

minimum on/off time limit, (39)

where pg,t, Ig,t, yg,t, and zg,t are unit dispatch, unit status,
startup indicator, and shutdown indicator, respectively. rug and
rdg are unit ramping up and ramping down rates, respectively.
In this paper, x denotes the binary variable vector including
Ig,t, yg,t, and zg,t, and p denotes the dispatch vector. (34) rep-
resents the generation/load balance constraint; (35) represents
the power flow constraint; (36) represents the minimum and
maximum capacity constraints; (37)-(38) represent the ramp-
ing up and ramping down constraints, respectively. Constraints

(34)-(39) are rewritten as

Ax+Bp ≤ b.

The feasible set F is defined as

F :=
{

(y, z, I, p) : ∀ε ∈ U ,∃∆p,∑
g

(
pg,t + ∆pg,t

)
=
∑
m

(
dm,t + εm,t

)
,∀t (40)

−Fl ≤
∑
m

Γm

( ∑
g∈G(m)

(
pg,t + ∆pg,t

)
− dm,t − εm,t

)
≤ Fl,∀l, t (41)

¯
rg,t(x, p) ≤ ∆pg,t ≤ r̄g,t(x, p),∀g, t

}
(42)

where r̄g,t(x, p) and
¯
rg,t(x, p) are the upper bound and lower

bound of ∆pg,t. Constraints (40)-(41) are rewritten as

D(p+ ∆p) + Eε ≤ h.

Constraint (42) is rewritten as

Fx+Gp+H∆p ≤ g.

R(ε) is formulated as

R(ε) :=
{

(∆p, sD+ , sD− , sL+ , sL−) : (43)

sD+ , sD− , sL+ , sL− ≥ 0∑
g

(
pg,t + ∆pg,t

)
=
∑
m

(
dm,t + εm,t

)
+ s

D+

t − sD−t ,∀t (44)

pinj
m,t =

∑
g∈G(m)

(
pg,t + ∆pg,t

)
− dm,t − εm,t,∀m, t (45)

−Fl ≤
∑
m

(
Γl,mp

inj
m,t

)
+ s

L+

l − sL−l ≤ Fl,∀l,∀t (46)

¯
rg,t(x, p) ≤ ∆pg,t ≤ r̄g,t(x, p),∀g, t

}
(47)

where (44) denotes the generation/load balance constraints,
(45) defines the net power injection pinj

m,t, (46) denotes the
line capacity constraints, (47) denotes the limits of the unit
generation adjustment ∆pg,t as a function of given UC and
ED as well as unit ramping rates and generation capacities.

APPENDIX B
PROOF OF THEOREMS 1 AND 2

λ>Eε is approximated as

λ>Eε = λ>(q +
¯
q) =

Ns∑
i

λiqi + λ>

¯
q

≈
Ns∑
i

K∑
k=0

2−kzi,kqi + λ>

¯
q

Denote ξi,k := zi,kqi. We have

ξi,k =

{
qi, if zi,k = 1, (48)
0, if zi,k = 0. (49)

ε is bounded according to the definition of U . Hence, Eε is
also bounded. With (18), we also have 0 ≤ q ≤ q̄. Therefore,
constraints (48)(49) are equivalent to the following constraints{

ξi,k ≥ 0, ξi,k ≥ qi − q̄i + q̄izi,k (50)
ξi,k ≤ q̄izi,k, ξi,k ≤ qi (51)
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Furthermore, as (RP) is a maximization problem and the coef-
ficients of ξi,k are positive, the constraints (50) are redundant.

The feasible region of λ and µ in (RP) remain the same,
although (17) is introduced to linearize the bilinear term in
the objective function. Then, we only need to consider the
difference of the objective functions.∣∣∣∣∣λ>Eε−

(
Ns∑
i

K∑
k=0

2−kzi,kqi + λ>

¯
q

)∣∣∣∣∣
=

∣∣∣∣∣
Ns∑
i

λiqi −
Ns∑
i

K∑
k=0

2−kzi,kqi

∣∣∣∣∣
=

∣∣∣∣∣
Ns∑
i

(
λi −

K∑
k=0

2−kzi,k

)
qi

∣∣∣∣∣
≤
Ns∑
i

2−K q̄i

The first equality follows (18). With the upper bound of BE
approximation |λi −

∑K
k=0 2−kzi,k| ≤ 2−K , the inequality

follows.

APPENDIX C
PROOF OF THEOREM 3

The flow constraint for line l in the positive direction at t
is inactive if line capacity Fl is greater than

max
{∑

m

Γl,mp
inj
m,t :

∑
m

pinj
m,t = 0,

¯
pinj
m,t ≤ p

inj
m,t ≤ p̄

inj
m,t ∀m

}
.

With the introduction of pinj+
m,t := pinj

m,t −
¯
pinj
m,t, the above

problem is reformulated as

max


∑
m

Γl,mp
inj+
m,t + f vt

l,t :
∑
m

pinj+
m,t = pvt

t ,

0 ≤ pinj+
m,t ≤ p̄

inj+
m,t ∀m

 (52)

If (52) is feasible, there must exist an integer j satisfying (24).
If the shift factors are ordered as (26), the optimal solution to
(52) is

pinj+
mn,t =


p̄inj+
mn,t, n = 1, · · · , j − 1

pvt
t −

∑j−1
n=1 p̄

inj+
mn,t, n = j

0, n = j + 1, · · · , Nd,

and the optimal value is

j−1∑
n=1

Γl,mn p̄
inj+
mn,t + Γl,mj

(
pvt
t −

j−1∑
n=1

p̄inj+
mn,t

)
+ f vt

l,t

=

j−1∑
n=1

(Γl,mn − Γl,mj )p̄
inj+
mn,t + Γl,mjp

vt
t + f vt

l,t.

Therefore, Theorem 3 is proved.

APPENDIX D
PROOF OF THEOREM 4

From step 2 to step 5 in Algorithm 3, there are T max-
min subproblems. In the first iteration from step 6 to step 15,
there are T max-min subproblems. After the first iteration from
step 6 to step 15, there is only one max-min subproblem, and∑
t vt decreases by 1 each time. The maximal violation after

step 5 is
∑
t Λt − Λ. The while loop ends until

∑
t vt = Λ

after
∑
t Λt − Λ iterations. Hence, the total number of max-

min subproblem is 2T +
∑
t Λt − Λ. In fact, if φt(vt) = 0,

then φt(vt − 1) must be 0. Hence, in this case, there is no
need to solve another max-min subproblem to get the value
of φt(vt − 1).

APPENDIX E
PROOF OF PROPOSITION 1

The max-min problem (USP) can also be reformulated as a
bilinear programming problem according to the duality theory.
Denote it as (UBP). Consider λudt as the dual variable for
(21) and λdt for (44). On a side note, (44) is expressed as
two inequality constraints in (10c). Then the only difference
between (BP) and (UBP) is that

−1 ≤ λdt ≤ 1,∀t (53)

while λudt is unbounded. Hence, φu ≥ φ follows. When the
optimal solution (x∗, p∗) to (P) is found, we have φ = φu =
0. It means sD+ = sD− = 0. Therefore, adding constraint

−1 ≤ λudt ≤ 1,∀t

in (UBP) does not alter the optimal solution.

APPENDIX F
PROOF OF PROPOSITION 2

It is observed that
{
V1(v1), · · · ,VT (vT ) :

∑
t vt ≤ Λ, vt ≤

Λt, vt ∈ Z+

}
= U . On the other hand, given (x, ε), the inner

problem in (SP) is time-decoupled. Therefore, the feasible
region of (IP) and that of (SP) are the same. Hence, φIP = φ
and solution εt(v∗t ) is a sub-vector of ε∗.
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