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Abstract—Two critical issues have arisen in transmission ex-
pansion planning with the rapid growth of wind power gen-
eration. First, severe power ramping events in daily operation
due to the high variability of wind power generation pose great
challenges to multi-year planning decision making. Second, the
long construction periods of transmission lines may not be able to
keep pace with the fast growing uncertainty due to the increasing
integration of wind power generation. To address such issues,
we propose a comprehensive robust planning model consider-
ing different resources, namely, transmission lines, generators,
and FACTS devices. Various factors are taken into account,
including flexibility requirements, construction period, and cost.
We construct the hourly net load ramping uncertainty (HLRU)
set to characterize the variation of hourly net load including
wind power generation, and the annual net load duration curve
uncertainty (LDCU) set for the uncertainty of normal annual
net load duration curve. This results in a two-stage robust
optimization model with two different types of uncertainty sets,
which are decoupled into two different sets of subproblems to
make the entire solution process tractable. Numerical simulations
with real-world data show that the proposed model and solution
method are effective to coordinate different flexible resources,
rendering robust expansion planning strategies.

Index Terms—Power system planning, FACTS, wind power,
ramping requirements, robust optimization.

NOMENCLATURE

A. Indices

h/y Hourly/yearly time index.
i, j Bus index.
ij Transmission corridor index.
k/s Line/generator index.
m/w FACTS device/generator type index.
y0 Base year.
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B. Parameters

ai, bi Fuel cost coefficients of existing genera-
tors.

aw, bw Fuel cost coefficients of new generators.
cm/cw/cij Investment cost of new FACTS de-

vices/generators/lines.
dh Time slot in an annual net load duration

curve.
ng,max
i Maximum number of new generators at

each bus.
nl,max
ij /nl,min

ij Maximum/minimum number of lines in
each transmission corridor.

P di,y,h Power demand.
P f,max
m /P l,max

ij Capacities of FACTS devices/lines.
P g,max
i /P gn,max

w Maximum power outputs of existing/new
generators.

P g,min
i /P gn,min

w Minimum power outputs of existing/new
generators.

Rui /R
d
i Ramp up/down limits of existing genera-

tors.
Runw /Rdnw Ramp up/down limits of new generators.
Xij Reactance of transmission lines.
yg/yl Construction periods of new genera-

tors/lines.

C. Variables

nfij,y,k,m/nlij,y,k Binary variables indicating the installa-
tion of new FACTS devices/lines.

P cij,y,h Power flow through transmission corri-
dors.

P fij,y,h,k,m Power injections of a FACTS devices.
P lij,y,h,k Power flow through transmission lines.
vgi,y,h/v

gn
i,y,h,s,w Status of existing/new generators.

θi,y,h Phase angles.

I. INTRODUCTION

THE rapid growth of wind power generation has posed
new challenges to transmission expansion planning

(TEP), among which two critical issues need to be addressed:
1) the uncertainty and variability of wind power require more
flexibility in power system operation, particularly the ramping
capability; 2) the long construction periods of transmission
lines [1] may not be able to keep pace with the fast growth
of wind power penetration.



2

Great efforts have been devoted to the handling of wind
power uncertainty in TEP. To characterize the uncertainty,
stochastic optimization approaches generate a number of sce-
narios [2], [3], while robust optimization approaches employ
uncertainty sets [4]–[8]. In order to exploit the flexibility of
power system, TEP is usually coordinated with generation
expansion planning (GEP) [9]–[12]. In [13], wind power
penetration is considered in a composite generation and trans-
mission expansion model solved by a branch and bound
method. A multi-objective probabilistic coordinated generation
and transmission expansion framework is proposed in [14],
and normal boundary intersection method is used to obtain
the Pareto-optimal solutions. A tri-level reliability-constrained
robust power system expansion planning model is proposed in
[15], where both discrete and continuous uncertain variables
are considered simultaneously.

In the state-of-the-art TEP model, operational constraints
are usually formulated based on annual load duration curve
(LDC), monthly load blocks [16], or selected scenarios [3],
[17]. However, the ramping requirements have received little
attention. As more and more wind power is integrated, the
ramping capability of a power system will become a key
limiting factor to its capability of accommodating variable
wind generation. This motivated us to explicitly incorporate
ramping requirements into the TEP model in this paper. For
the convenience of discussion, we consider only the net load
which is defined as the remaining system load not served by
wind power generation [18].

New technologies in transmission network, such as flexible
AC transmission systems (FACTS), have been considered in
TEP. Phase-shifter transformer is considered as an element
in TEP to extend the utilization of classical components in
[19]. An investment valuation approach is proposed in a
real option analysis framework to assess the option value of
FACTS in TEP [20]. In [21], energy storage, demand-side
management, and phase-shifting transformer are incorporated
into TEP based on a stochastic framework to investigate the
potential of these non-conventional assets in accommodating
renewable energy. It is worth noting that FACTS devices
cannot only provide extra flexibility to serve as a supplement
in TEP decision making, but also enable new opportunities
to coordinate the construction process, due to their relatively
short construction periods, as we will reveal in this paper.

Aiming at addressing the two issues mentioned above, the
main contribution of this paper is to consider two types of
uncertainty sets representing the hourly net load ramping
uncertainty (HLRU) and the annual net load duration curve un-
certainty (LDCU) simultaneously. To this end, the two types of
uncertainty sets are incorporated into a comprehensive multi-
year planning model that considers three typical resources of
flexibility: transmission lines, generators, and FACTS devices.
Construction periods are considered to investigate the impacts
of FACTS devices. The planning strategy is based on an
overall consideration of various factors, including flexibility
requirements, construction period, and cost. Numerical results
reveal that FACTS devices can help to cope with uncertainty
and coordinate resources with different construction periods,
providing new insights to power system planners about the

coordination of different flexibility resources.
The uncertainty of ramping in the multi-year planning

problem is modeled using a statistical method as a trade-off
between accuracy and efficiency. With increasing integration
of renewable energy generation, the operational flexibility of
the system may not be sufficient due to the lack of ramping
capability. In the literature, the uncertainty of annual net load
duration curve is usually taken into account using typical
scenarios or uncertainty sets, while convex hull has been
used to model the uncertain hourly load variation as well
as the ramping effect of the representative day [22], which
can be further improved for characterizing the uncertainty set
of representative days. In this paper, an alternative method
using an additional uncertainty set is enforced to describe
the hourly net load ramping uncertainty without introducing
significant computational burden, rendering a mixed-integer
linear programming (MILP) problem. Real-world load data are
used to verify the validity of the proposed model. The results
show that the proposed model renders a reliable planning
strategy with relatively high computational efficiency.

Then the two types of uncertainties are decoupled into two
subproblems to improve the efficiency of the Column-and-
Constraint Generation (C&CG) [23] method in our case. The
two subproblems are solved using different methods, and the
Relax-and-Enforce Decomposition (RED) [24] technique is
applied to make a temporal decomposition to further reduce
computational burden. Tests conducted on the IEEE 118-bus
system and a real-world system show that the RED technique
may accelerate the solution process as much as one order of
magnitude compared with the standard C&CG method without
temporal decomposition.

The rest of the paper is organized as follows. Section II
gives the comprehensive TEP model. The solution approach is
presented in Section III. In Section IV, case studies using real-
world data are conducted. Section V draws the conclusions.

II. PROBLEM FORMULATION

The aim of the proposed robust planning model is to find the
least total cost, including the investment cost and the operation
cost of the base-case scenario, over two feasibility sets defined
by uncertainties, one of which refers to LDCU, denoted by
Fd, and the other refers to HLRU, denoted by Fr. The
base-case scenario is built according to the forecasted data,
while generators can be re-dispatched and FACTS devices
can be adjusted to control the power flow when uncertainty is
revealed. Meanwhile, the re-dispatch cost for accommodating
deviations from the base-case scenario, known as recourse
cost [24], should be limited under an acceptable level. Note
that in this paper the planning strategy is assumed always
feasible without load shedding, which may be stronger than
the traditional TEP model where load shedding is allowed.
The conservativeness of the proposed model, however, can
be controlled by adjusting the recourse cost and uncertainty
sets. Besides, one can further consider the constraints on the
acceptable amount of load shedding in the our model, which
will be presented in our future work.
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A. Uncertainty Modeling and Decoupling

As mentioned previously, we depict the uncertainty directly
based on net load for the convenience of discussion. Fig.1
illustrates the LDCU. The annual net load duration curve is
linearized by dividing the whole time period into several time
slots and averaging the net load within each time slot. For
example, there are d hours during a year when the net load
level is higher than Pd, and d+ ∆d hours when the net load
level is higher than Pd+∆d. Assume that P avgd is the average
net load of all the net loads within the time slot [d, d + ∆d]
and that P avgd lasts for ∆d hours during a year. Then, the
LDCU indicates that each average net load level P avgd may be
higher or lower than the forecasted value due to unavoidable
forecasting error of the associated net load duration curve.
Net 

Load

Cumulative Hours

LDCU

Net 

Load

Hour0 0

LDCU

Annual Net Load Duration Curve

Linearized Annual Net Load Duration Curve

Net Load Curve

d d+Dd

Pavg

Pd

Pd+Dd

LDCU

LDCU

Fig. 1. Load duration curve uncertainty (LDCU).
The annual net load duration curve only arranges all the net

load levels in a descending order of magnitude, regardless of
the temporal variation between two adjacent time slots. Hence
the hourly variation of net load is ignored. Traditionally, such
variation is considered by simply using some typical daily load
curves, because it is intractable to simulate all possible daily
load curves in a multi-year planning model. However, such
treatment may not suffice to cover all the variations when a
large amount of wind power generation is integrated with high
uncertainty. In this context, the HLRU is introduced as a trade-
off to describe the hourly variation of net load, bridging the
gap between the annual net load duration curve and the daily
net load curve. We examine the annual net load curve to record
those hourly ramping values where the ramping events start
from the net load levels within the range [Pd+∆d, Pd]. Then we
select the highest ramping up/down value as the upper/lower
bound of the HLRU.

The two types of uncertainties are coupled with each other,
creating considerable difficulties in problem solving. In fact,
8760 hours of net loads are sorted to make an annual net
load duration curve, indicating that each net load level in the
annual net load duration curve corresponds to a net load level
at a specific hour in a certain day. Consider a specific hour, t.
Then the LDCU represents the uncertainty of net load at hour
t, while the HLRU indicates the net load variation from hour
t to t+1. When both the LDCU and the HLRU are taken into
account, there are infinite combinations of net load levels at
hour t and ramping from hour t to t + 1. Hence, we assume
that the ramping approximately starts from each average net
load level P avgd so as to decouple the LDCU from the HLRU,
resulting in two uncertainty sets, Ud and Ur, as follows.

Ud := {εdi,y,h ∈ R : ∀i, y, h,

|εdi,y,h| ≤ ūdi,y,h,
∑
i

|εdi,y,h|
ūdi,y,h

≤ Λy,h}
(1)

Ur := {εri,y,h ∈ R : ∀i, y, h, uri,y,h ≤ εri,y,h ≤ ūri,y,h} (2)

The characteristics of these two uncertainty sets and the
resources available to accommodate the uncertainty are dif-
ferent in the following aspects: 1) the absolute values of the
upper and lower bounds of εdi,y,h are assumed to be the same,
indicating the equal possibility of over-forecast and under-
forecast, while the upper limit ūri,y,h and lower limit uri,y,h of
εri,y,h , which are related to the maximum ramp-up and ramp-
down events, may be different; 2) the budget of uncertainty
Λy,h [25] is employed in (1) to control the conservativeness
related to forecast errors; 3) the intra-hour flexible resources
are required to accommodate the LDCU, such as 10-minute
spinning reserve, while the inter-hour flexible resources are ap-
plied to address the HLRU, such as hourly ramping capability
of generators.

Figure. 2 depicts an illustrative example of constructing the
LDCU and HLRU sets based on an annual load curve. The
process can be divided into the following four steps:

Step 1: Constructing hourly net load ramping events
from an annual net load curve. The annual net load curve
contains 8760 hours net loads. Hourly net load ramping event
is the difference of net loads between two adjacent hours.
Each hourly net load ramping event is attached to the hourly
net load level where the ramping starts from.

Step 2: Constructing an annual net load duration curve
and arranging the corresponding hourly net load ramping
events. The annual net load duration curve is derived by
sorting all the net loads in a descending order. Accordingly,
the hourly net load ramping events, which are attached to net
load levels in Step 1, are arranged.

Step 3: Linearizing the annual net load duration curve.
The annual net load duration curve is divided into several slots.
In this example, it is divided into 4 slots, i.e., A, B, C, D. Then
the average value of the net load levels within each slot is used
to linearize the annual net load duration curve as a stepwise
function. Accordingly, all the ramping events are divided into
the same 4 slots, i.e., A, B, C, D. For instance, in slot A,
suppose there are 100 different net load levels. For linearizion,
the average value of these 100 net load levels represents the
net load level of slot A. And the hourly net load ramping
events attached to these 100 net load levels belong to slot A.

Step 4: Constructing uncertainty sets. Based on the
average net load of each slot, the upper and lower bounds
of LDCU set are constructed according to the forecast error
of net load curves. Meanwhile, the range of HLRU set for
each slot is derived from the maximum hourly net load ramp-
up and ramp-down events within each slot. For instance, in
slot A, the 100 hourly ramping events are examined to select
the maximum ramp-up value and the maximum ramp-down
value as the upper bound and the lower bound of the HLRU
set associated with slot A, respectively.

This method bridges the gap between the long-term uncer-
tainty of planning and the short-term uncertainty of operation,
and is also a trade-off between accuracy and efficiency.
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Fig. 2. Process of constructing the LDCU and HLRU sets.

B. Objective Function

Let nf , ng , nl denote the vectors of binary variables
indicating the installation of new FACTS devices, generators,
and lines, respectively; let vector v denote the binary variables
indicating the status of generator; let vectors pc, pf , pg , pl

denote the active power associated with transmission corridors,
FACTS devices, generators and lines, respectively; let vector
θ denote the phase angles; let εd and εr be the uncertainty
variables associated with LDCU and HLRU, respectively. The
objective (3) is to minimize the total investment and operation
cost in the base-case scenario shown below.

min
(nf ,ng,nl,v,pg)∈Fd∩Fr

a>nl + b>nf + c>ng + d>v + e>pg

(3)
where

a>nl =
∑
y

∑
ij

∑
k

cij(n
l
ij,y,k − nlij,y−1,k)

(1 +D)(y−y0−yl)
(4)

b>nf =
∑
y

∑
ij

∑
k

∑
m

cm(nfij,y,k,m − n
f
ij,y−1,k,m)

(1 +D)(y−y0)

(5)

c>ng =
∑
y

∑
i

∑
s

∑
w

cw(ngi,y,s,w − n
g
i,y−1,s,w)

(1 +D)(y−y0−yg)

(6)

d>v + e>pg =
∑
y

∑
h

∑
i

{
dh(aivi,y,h + biP

g
i,y,h)

(1 +D)(y−y0)

+
∑
s

∑
w

dh(awv
gn
i,y,h,s,w + bwP

gn
i,y,h,s,w)

(1 +D)(y−y0−yg)

}
.

(7)

Assume that a new line takes yl years to build and the
construction is finished in year t. Then, the investment of the

line has to be made in year t − yl. Accordingly, t − y0 − yl
is the period with a discount rate D, as shown in (4). If yl

equals 0, it means that the new line is put into use in the
same year when the investment is made. The investment cost
of a generator is formulated similarly (6). It is assumed that a
FACTS device is installed in the same year when it is invested
(5). The operation cost of the base-case scenario is formulated
using a linear production cost function as in (7).

C. Incorporating FACTS into TEP

We incorporate FACTS devices into the TEP model using
the power injection model [26]. The nodal power balance
equation is formulated as (8), where a FACTS device is formu-
lated as two power injections, which have the same amount,
but opposite signs, located at each bus of a transmission
corridor.∑
j

P cij,y,h = P gi,y,h +
∑
s

∑
w

P gni,y,h,s,w − P
d
i,y,h

+
∑
j,i<j

∑
k

∑
m

P fij,y,h,k,m −
∑
j,i>j

∑
k

∑
m

P fji,y,h,k,m

(8)
The power injections of FACTS devices are constrained by (9)

|P fij,y,h,k,m| ≤ P
f,max
m nfij,y,k,m. (9)

The transmission capacity is constrained by

|P lij,y,h,k −
∑
m

P fij,y,h,k,m| ≤ P
l,max
ij nlij,y,k. (10)

The DC power flow is enforced by

|θi,y,h − θj,y,h −XijP
l
ij,y,h,k| ≤ 2θmax(1− nlij,y,k) (11)

where the phase angles satisfy

|θi,y,h| ≤ θmax (12)

and the maximum phase angle θmax is set as π/2 [27].
Constraint (13) allows the installation of a FACTS device only
in the existing line, but no more than one FACTS device is
allowed in each line.∑

k

∑
m

nfij,y,k,m ≤
∑
k

nlij,y,k (13)

Once a FACTS device is installed, it will exist during the rest
of the planning horizon (14).

nfij,y,k,m ≥ n
f
ij,y−1,k,m (14)

Besides, new FACTS devices in each corridor are installed
sequentially (15).

nfij,y,k,m ≤ n
f
ij,y,k−1,m (15)

At last, only one type of FACTS device is allowed to be
installed in each line (16).∑

m

nfij,y,k,m ≤ 1 (16)
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D. Other Constraints in the Base-case Scenario

Each transmission corridor has a minimum limit and a
maximum limit to the number of lines (17). The minimum
number refers to the number of existing lines in each corridor.
Constraint (18) makes sure no new line is built before the first
construction period.

nl,min
ij ≤

∑
k

nlij,y,k ≤ n
l,max
ij (17)

∑
k

nlij,y,k ≤ n
l,min
ij ,∀y < y0 + yl (18)

Constraint (19) indicates that once a new line is built, it will
exist during the rest of planning horizon.

nlij,y,k ≥ nlij,y−1,k (19)

Besides, the new lines in each transmission corridor are built
sequentially (20).

nlij,y,k ≤ nlij,y,k−1 (20)

The total power flow through a transmission corridor is the
sum of the power flows on all lines in that corridor (21).

P cij,y,h =
∑
k

P lij,y,h,k (21)

The maximum number of new generators is limited by (22).∑
s

∑
w

ngi,y,s,w ≤ n
g,max
i (22)

Once a new generator is installed, it will exist during the rest
of planning horizon (23).

ngi,y,s,w ≥ n
g
i,y−1,s,w (23)

Besides, the new generators at each bus are built sequentially
(24), and only one type of new generator would be installed
each time (25).

ngi,y,s,w ≤ n
g
i,y,s−1,w (24)

∑
w

ngi,y,s,w ≤ 1 (25)

Constraint (26) indicates that a new generator can only be
dispatched after installation (26).

vgni,y,h,s,w ≤ n
g
i,y,s,w (26)

Constraints (27) and (28) enforce the capacity limits of the
existing generators and new generators, respectively.

P g,min
i vi,y,h ≤ P gi,y,h ≤ P

g,max
i vi,y,h (27)

P gn,min
w vgni,y,h,s,w ≤ P

gn
i,y,h,s,w ≤ P

gn,max
w vgni,y,h,s,w (28)

E. Robust Planning Model

The robust TEP model is formulated in a compact form
below, where bold symbols except for the variables mentioned
before are constant matrices or vectors. Vectors with 1 and 2 in
subscripts represent the variables associated with LDCU and
HLRU, respectively.

min
(nf ,ng,nl,v,pg)∈Fd∩Fr

a>nl + b>nf + c>ng + d>v + e>pg

(29)

s.t. Alnl ≤ f (30)

Bcpc +Clpl = 0 (31)

Dlnl +Elpl +Lpf ≤ 0 (32)

F ppc +Gppg +Hppf = g (33)

Dfnf +Efpf ≤ 0 (34)

Jnl +Kpl +Mθ ≤ h (35)

Aθθ ≤ k (36)

N lnl +Qfnf ≤ 0 (37)

Afnf ≤ l (38)
Agng ≤m (39)
Ngng +Qvv ≤ 0 (40)
Dvv +Evpg ≤ 0 (41)

where

Fd := {(nf ,ng,nl,v,pg) : ∀εd ∈ Ud,∃pc1,p
f
1 ,p

g
1,p

l
1,θ1

s.t. Bcpc1 +Clpl1 = 0 (42)

Dlnl +Elpl1 +Lpf1 ≤ 0 (43)

F ppc1 +Gppg1 +Hppf1 +Rεd = g (44)

Dfnf +Efpf1 ≤ 0 (45)

Jnl +Kpl1 +Mθ1 ≤ h (46)

Aθθ1 ≤ k (47)
Dvv +Evpg1 ≤ 0 (48)

e>(pg1 − pg) ≤ cd}, (49)

Fr := {(nf ,ng,nl,v,pg) : ∀εr ∈ Ur,∃pc2,p
f
2 ,p

g
2,p

l
2,θ2

s.t. Bcpc2 +Clpl2 = 0 (50)

Dlnl +Elpl2 +Lpf2 ≤ 0 (51)

F ppc2 +Gppg2 +Hppf2 +Rεr = g (52)

Dfnf +Efpf2 ≤ 0 (53)

Jnl +Kpl2 +Mθ2 ≤ h (54)

Aθθ2 ≤ k (55)
Dvv +Evpg2 ≤ 0 (56)
Spg + Tpg2 ≤∆}. (57)

Constraint (30) refers to the limits of new lines (17)-(20).
Equation (31) denotes (21). Constraints (32)-(38) represent the
constraints corresponding to FACTS devices, which are ex-
plained in detail in Section II-C. Constraint (39) is associated
with the limits of new generators (22)-(25). Constraint (40) is
the compact form of (26). Constraint (41) refers to (27)-(28).
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The solution to (30)-(41) in the base-case scenario should be
feasible for both feasibility sets, i.e. Fd and Fr, with flexible
resources accommodating uncertainty. When εd varies within
the uncertainty set Ud, flexible resources are re-dispatched
while power balance constraint (44) is satisfied, and the
recourse cost is within an acceptable level cd (49), which is
reformulated in detail as (58).∑

y

∑
h

∑
i

∑
s

∑
w

dhbw(P gn1,i,y,h,s,w − P
gn
i,y,h,s,w)

(1 +D)(y−y0−yg)

+
∑
y

∑
h

∑
i

dhbi(P
g
1,i,y,h − P

g
i,y,h)

(1 +D)(y−y0)
≤ cd (58)

There are no ramping constraints in Fd, since this set is to
check if the planning strategy and unit commitment sched-
ule are feasible within a certain recourse cost limit, while
economic dispatch is performed based on the plausible load
levels. εr is introduced into the power balance equation in
Fr (52). When εr varies within the uncertainty set Ur, the
generators are re-dispatched within the corresponding ramping
limits (57), which can be reformulated in detail as below.

P g2,i,y,h − P
g
i,y,h ≤ R

u
i (59)

P g2,i,y,h − P
g
i,y,h ≥ −R

d
i (60)

P gn2,i,y,h,s,w − P
gn
i,y,h,s,w ≤ R

un
w (61)

P gn2,i,y,h,s,w − P
gn
i,y,h,s,w ≥ −R

dn
w (62)

The recourse cost constraint is omitted in Fr since this set
is to ensure that all the possible net load ramping events can
be accommodated without any physical limit violation. Other
constraints in Fd and Fr are similar to those in the base-case
scenario.

III. SOLUTION METHODOLOGY

The solution method is based on the C&CG framework
[23]. First, by decoupling the two types of uncertainties, the
proposed model is formulated as a master problem and two
subproblems. Second, taking advantage of the dual theory
and the extreme point formulation, the subproblems can be
reformulated as mixed-integer linear programming (MILP)
problems. Third, to improve computational efficiency, the
RED approach is applied to decompose the subproblem in
a temporal manner.

A. Column-and-Constraint Generation Method (C&CG)

By applying C&CG method, the proposed model is refor-
mulated as a master problem and two subproblems. The master
problem (MP) is defined in a compact form as below.

(MP) min
x,pg

r>x+ e>pg (63)

s.t. Ax+Bp+Cθ ≤ s (64)

Dx+Epτ + Fθτ +Gεd,τ ≤ w,∀τ ∈ T (65)

e>(pg,κ − pg) ≤ cd,∀κ ∈ K (66)
Dx+Epκ + Fθκ +Gεr,κ ≤ w,∀κ ∈ K (67)
Spg + Tpg,κ ≤∆,∀κ ∈ K (68)

where x denotes all the binary variables, while p and θ
represent the variables associated with active power and phase
angles, respectively. T , K are the index sets for uncertainty
points εd,τ and εr,κ, respectively, which are generated in
subproblems during iterations. Variable pτ , pg,τ and θτ are
associated with εd,τ , while pκ, pg,κ and θκ are associated
with εr,κ. The master problem is an MILP problem that can
be solved by using commercial solvers.

The subproblem related to LDCU (SPD) is formulated as
follows with subscription 1 indicating associated variables.

(SPD) max
εd∈Ud

min
(s+1 ,s

−
1 ,p1)∈D(εd)

1>s+
1 + 1>s−1 (69)

where

D(εd) := {(s+
1 , s

−
1 ,p1) : s+

1 , s
−
1 ≥ 0,

Dx+Ep1 + Fθ1 +G(εd + s+
1 − s

−
1 ) ≤ w (70)

e>(pg1 − pg) ≤ cd}. (71)

The subproblem related to HLRU (SPR) is formulated as
below with subscription 2 indicating associated variables.

(SPR) max
εr∈Ur

min
(s+2 ,s

−
2 ,p2)∈R(εr)

1>s+
2 + 1>s−2 (72)

where

R(εr) := {(s+
2 , s

−
2 ,p2) : s+

2 , s
−
2 ≥ 0,

Dx+Ep2 + Fθ2 +G(εr + s+
2 − s

−
2 ) ≤ w (73)

Spg + Tpg2 ≤∆}. (74)

The objectives of the above subproblems are to minimize
the summation of non-negative slack variables, which indicate
the un-accommodated uncertainty.

B. Subproblem Reformulation

The above two subproblems are difficult to solve since there
are infinite values of uncertain variables and re-dispatch strate-
gies. However, it has been proved that the optimal solution
is achieved at the extreme point of polygonal uncertainty set
[28], [29]. Therefore, the subproblems are first converted into
maximization problems according to the duality theory, and
then reformulated as MILP problems [24] by applying the
closed form of extreme points.

C. Relax-and-Enforce Decomposition (RED)

Although the infinite values of continuous uncertain vari-
ables have been reduced to finite extreme points and the
subproblems have been converted into MILP problems, the
number of extreme points in large systems is so huge that the
problems may be computationally intractable. Therefore, the
RED technique is applied to decompose the two subproblems
into smaller time-decoupled problems which can be solved
efficiently. The only time-coupled constraint in SPD (71) is
relaxed in the following relaxed subproblem SPD-1.

(SPD-1) max
εd∈Ud

min
(s+1 ,s

−
1 ,p1)∈L1(εd)

1>s+
1 + 1>s−1

where

D1(εd) := {(s+
1 , s

−
1 ,p1) : s+

1 , s
−
1 ≥ 0,
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Dx+Ep1 + Fθ1 +G(εd + s+
1 − s

−
1 ) ≤ w}.

Then it is enforced in SPD-2 as below.

(SPD-2) max
εd∈Ul

min
p1∈L2(εd)

e>(pg1 − pg)− cd

where

D2(εd) := {p1 : Dx+Ep1 + Fθ1 +Gεd ≤ w}.

SPD-1 and SPD-2 can both be formulated as MILP prob-
lems using the method presented in Section III-B. Further-
more, since the annual net load duration curve does not
represent the temporal relationship between different net load
levels, SPD-1 and SPD-2 can be decomposed into subproblems
for individual time slots and solved in parallel. Since the SPR
is based on the annual net load duration curve, and there is
no recourse cost constraint in it, it can simply be decomposed
into time-independent subproblems. Meanwhile, the temporal
relationship of net load ramping events in each subproblem is
characterized using the HLRU sets, while the re-dispatch limit
is enforced by (74).

Master Problem

SPD-1: Relaxed Subproblem

(Temporal Decomposition)

SPD-2: Enforced Subproblem

(Temporal Decomposition)

Subproblem of LDCU Subproblem of HLRU

Converge?

Converge?

Converge?

SPR

(Temporal Decomposition)

Uncertainty Set

Decoupling

End

Yes

Yes Yes

No

No

No

Extreme Points

Associated with the Worst-case Scenario

Extreme Points

Associated with the Worst-case Scenario

Fig. 3. Flowchart of the solution process.
The solution process is illustrated in Fig. 3, which contains

one master problem and three subproblems, all formulated as
MILP problems. The subproblems are solved sequentially and
generate extreme points of uncertainty sets in each iteration.
If the difference of the objective values of two iterations is
within the pre-defined tolerance, the procedure is regarded to
be converged. The convergence tolerance used in this paper is
10−3, which has been used in [24], [25].

IV. CASE STUDIES

A. A Modified Garver’s 6-bus System

The proposed approach is applied to a modified Garver’s
6-bus system [30] where a line is added in corridor 2-6. The
line data can be found in [31]. At most two parallel lines are
allowed in each corridor. New generators can only be installed
at bus 1, 3, 6, and at most two generators are allowed to
install at each bus. Other detailed data can be found online at
http://motor.ece.iit.edu/Data/rotep.

Real-world net load data from PJM in year 2015 [32] are
employed, as illustrated in Fig. 4. The planning horizon is
five years. The annual growth rate of net load and hourly net
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Fig. 4. Annual net load duration curve with two types of uncertainty.

load ramping range are both assumed to be 5%. The LDCU
is assumed to be 5% of each nodal net load.

The budget of uncertainty Λy,h(β) is selected as follows
[33], [34]:

Λy,h(β) = Φ−1(1− β)
√
N

where β is a predefined confidence level, and Φ(·) is the cumu-
lative distribution function of a standard normal distribution.
N denotes the number of uncertain variables. In this case,
N = 6 and we choose Λy,h = 4, so that 1− β = 94.88%.

1) Flexibility of Different Resources: The proposed plan-
ning model consists of three flexible resources: transmission
lines (T), generators (G), and FACTS devices (F). Different
combinations of these resources are compared to reveal some
insights on how to coordinate them. The construction period of
a transmission line is 1 year, while new generators and FACTS
devices are assumed to be put into use in the same year when
the investments are made. The coordination of construction
period is discussed in Section IV-A2.

TABLE I
COSTS OF DIFFERENT MODELS

Cost (M$) T G F T+Ga T+F G+F T+G+F
Line -b - - - - - 48.14
FACTS - - - - - - 15.46
Generator - - - - - - 70.00
Investmentc - - - - - - 133.60
Operationd - - - - - - 167.21
Total - - - - - - 300.81
a The plus sign means the combination of different resources.
b The hyphen indicates no result is obtained due to infeasibility.
c Total investment cost.
d Operation cost of the base-case scenario.

As shown in Table I, only T+G+F results in a feasible
solution. Accordingly, we have the following observations
from this case:

a) The master problems of models T, G, and F are infeasible.
This implies that applying only one type of flexible resource
cannot provide sufficient flexibility in this case.

b) T+F is infeasible due to the lack of new generators to
meet the increasing load. Thus the role of generation-side
flexibility may not be replaced by transmission flexibility.

c) G+F is infeasible due to the lack of transmission capacity.
FACTS devices usually have smaller capacity than lines and
their installation relies on lines. Therefore, FACTS devices
may not be completely take the place of transmission lines in
planning, but rather serve as a supplement.
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d) T+G is infeasible since the LDCU cannot be coped with
in this case, showing that more flexibility is required to handle
the LDCU.

e) Only T+G+F is capable of addressing the LDCU and the
HLRU simultaneously, implying that LDCU and HLRU can
lead to much higher requirement of flexibility.

These observations evidently reveal that it is necessary to
coordinate different types of flexible resources in order to
accommodate LDCU and HLRU simultaneously.

2) Coordination of Construction Periods: In practice, the
construction of transmission lines and generators usually takes
more time than that of wind farms, leading to mismatch in ex-
pansion. In this section, model T+G+F is tested with different
construction periods of transmission lines and generators, to
show impacts of construction periods on planning strategy and
underlying benefits of FACTS.

Table II shows the costs with different construction periods
of lines, while those of generators and FACTS are 0 year.
When the construction period of lines increases from 0 year
to 1 year, the investment of line decreases, while the invest-
ment of FACTS increases, indicating that FACTS devices are
capable of providing transmission flexibility to coordinate with
longer-term construction of lines. Higher operation cost of
the base-case scenario and higher total cost are experienced,
implying that FACTS devices are unable to completely replace
the role of transmission lines in providing flexibility. In
particular, when the construction period of lines increases to
two years, the problem turns to be infeasible as the LDCU
cannot be accommodated fully.

TABLE II
COSTS WITH DIFFERENT CONSTRUCTION PERIODS OF LINE

Construction Period (Year)
Cost (M$) 0 1 2
Line 60.00 48.14 -
FACTS 0.00 15.46 -
Generator 70.00 70.00 -
Investment 130.00 133.60 -
Operation 150.41 167.21 -
Total 280.41 300.81 -

When the construction period of generators increases to 1
year, the problem is infeasible even when the construction
period of lines is 0 year, since no new generator can be
installed in the first year to address the HLRU. It demonstrates
the irreplaceable role of generation-side flexibility in the
planning problem with uncertainty.

Overall, it may be understood that FACTS devices are
supplemental transmission flexible resources that can help
coordinate construction periods, while the generation-side flex-
ibility has a crucial role in addressing the HLRU. Besides,
shorter construction periods of conventional resources can
better facilitate the integration of wind power generation.

3) Consideration of Uncertainty: In this section, the fol-
lowing three models are compared to analyze impacts of
uncertainties. Note that M1 and M2 are indeed parts of M3.
The costs of these models are listed in Table III.

M1: the planning model not considering uncertainty.
M2: the planning model only considering LDCU.
M3: the proposed model considering LDCU and HLRU.

TABLE III
COSTS UNDER DIFFERENT UNCERTAINTIES

Cost (M$) M1 M2 M3
Line 60.00 60.00 48.14
FACTS 4.00 9.00 15.46
Generator 25.00 50.00 70.00
Investment 89.00 119.00 133.60
Operation 146.78 147.75 167.21
Total 235.78 266.75 300.81

It is found that the investment cost, the operation cost
of base-case scenario, and the total cost increase as more
uncertainties are considered. The details of planning strategies
are given in Table IV. Accordingly, we have the following
observations:

a) Lines: The planning strategies of the three models all
consist of at least one new line in corridor 4-6, showing the
importance of investment in constructing lines.

b) FACTS: Compared with M1, in M2 where only LDCU
is considered, a FACTS device with larger capacity (type II)
is installed. Moreover, in M3 where HLRU is also taken into
account, not only the capacity of FACTS devices increases,
but more FACTS devices need to be installed in the 4th year,
leading to a postpone of new line construction. It demonstrates
that FACTS devices can considerably help provide transmis-
sion flexibility, especially when HLRU is considered.

c) Generators: When considering HLRU, a new generator
with larger ramping capability (type II) is installed, showing
there are additional requirements on generation-side flexibility.

TABLE IV
PLANNING STRATEGIES WITH DIFFERENT MODELS

Year 1 2 3 4 5

M1
Line -a 4-6 4-6b - - -
FACTS 1-2(I) 1-4(I)c - - - -
Generator 1d(I) - - - -

M2

Line - 4-6 4-6 - - -

FACTS 1-2(I) 1-4(II) - - - -
2-4(I) - - - -

Generator 1(I) 3(I) - - - -

M3

Line - 4-6 - 1-5 -

FACTS 1-2(I) 1-4(II) - - 2-6(I) 4-6(I) -
2-4(II) - - - -

Generator 1(II) - - - -
a The hyphen indicates no new facility is built or installed.
b Corridor number, each of which indicates a new line/FACTS device.
c The number in parenthesis indicates the type of FACTS de-

vices/generators.
d Bus number, each of which indicates a new generator.
In order to investigate the impacts of different uncertainties

on operational feasibility, we test the planning strategy of
M1 with feasibility sets Fd and Fr. In the test of Fd, the
planning strategy is feasible when the transmission capacity
constraints on lines 1-4 and 1-5 are relaxed, and the capacity
constraint of either G1 or G3 is relaxed. As the HLRU is
considered at the same time, besides the aforementioned line
and generator capacity constraints, the ramping constraint of
at least one of the existing generators has to be relaxed. In
short, the consideration of LDCU and HLRU leads to more
requirements of transmission and generation-side flexibility in
this case.

As to M3, when the convergence tolerance is set to 10−3, 3
cutting planes are generated by SPD, while 2 cutting planes are
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generated by SPR. When the convergence tolerance decreases
to 10−4, the number of cutting planes generated by SPD
increases rapidly to 10, while that generated by SPR remains
unchanged. However, the objective value remains unchanged.
When the convergence tolerance increases to 10−2, the number
of cutting planes is the same as that with the tolerance of
10−3, and the objective value is unchanged. Therefore, the
convergence tolerance of 10−3 is accurate enough for this case.

To test the robustness of the solutions of planning strat-
egy and unit commitment schedule, dispatch simulations are
performed for two sets of 1000 randomly generated sce-
narios. One set corresponds to the LDCU, which follows a
normal distribution with the mean P di,y,h and the standard
deviation ūdi,y,h, and is assumed to be within the interval
[P di,y,h− ūdi,y,h, P di,y,h + ūdi,y,h]. The other set is related to the
HLRU, which follows a uniform distribution in the interval
[P di,y,h + uri,y,h, P

d
i,y,h + ūri,y,h]. Load shedding is allowed

at the price of $7,000/MWh. When the LDCU and HLRU
scenarios are considered at the same time, the power demand
in both scenarios are met, while the ramping constraints
between the two scenarios are satisfied. Simulation results are
provided in Table V. It can be observed that when only the
LDCU is considered, M2 achieves the least expected total
cost (ETC). The ETC of M3 is higher than M2 since it is
more conservative. When LDCU and HLRU are both taken
into account, though the expected operation cost (EOC) of
M3 is higher than those of other models, M3 outperforms
the other models in terms of ETC since only the operation
cost of the base-case scenario is minimized. In particular,
M3 avoids the extremely high load shedding cost in the
possible scenario, indicating the necessity to consider the
HLRU. Since the average load shedding price for a developed,
industrial economy ranges from approximately $9,000/MWh
to $45,000/MWh [35], M3 has a bigger advantage when the
load shedding price is higher, as shown in Fig. 5. In short,
the robust model has a great advantage over the deterministic
model when the load shedding price is high, achieving a lower
ETC and avoiding the high cost in the worst-case scenario.

TABLE V
SIMULATION RESULTS WITH LDCU AND HLRU

Model ETCa EOC ELC HLCb EENSc

(M$) (M$) (M$) (M$) MWh/year

LDCU
M1 176.00 146.78 29.21 216.58 1014.36
M2 147.26 147.26 0 0 0
M3 162.03 162.03 0 0 0

LDCU M1 261.53 146.80 114.73 518.51 3936.96
+ M2 162.30 147.28 15.02 472.86 488.67

HLRU M3 162.04 162.04 0 0 0
a Expected total cost, including expected operation cost (EOC) and ex-

pected load shedding cost (ELC).
b Highest load shedding cost among all the scenarios.
c Expected energy not supplied.
Since it is difficult to forecast hourly load accurately several

years ahead, we randomly generate 10 scenarios each year
based on the hourly load data of PJM from year 2011 to 2015
(50 scenarios in total). Each scenario contains 8760 hours
load data, and the scenarios are assumed to follow normal
distributions. Daily unit commitment and economic dispatch
are performed for these scenarios.

The ETC, including the EOC and the expected load shed-
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Fig. 5. Expected total costs with different load shedding prices.

ding cost (ELC), is provided in Fig. 6. The results generally
coincide with our previous simulations. The solution of M3
ensures robustness to a large extent, though there is still load
shedding in M3, mainly because in the optimization model,
the uncertainty sets are constructed based on the stepwise net
load duration curves and the ramping events are assumed to
start from each average net load level of the stepwise net load
duration curves.
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Fig. 6. Expected costs of different models.

The deterministic model, M1, results in the highest ETC
since no uncertainty is considered. The difference between
M2 and M3 is that M2 only considers LDCU, while M3
considers both LDCU and HLRU. Comparing M3 with M2,
it is observed that the ETC of M3 is lower than that of M2
in most of the years, especially in years 2014 and 2015. The
average ETC in 5 years is reduced by about 3.3%. Besides, the
ELC of M3 is apparently lower than that of M2, showing the
effectiveness of M3 in capturing the ramping uncertainty. The
advantage of M3 in reducing the ELC is especially evident
in years 2014 and 2015 when the ELC is higher than that in
other years.

In order to further investigate the efficacy of M3, the loss
of load hours (LOLH) and the expected energy not supplied
(EENS) are presented in Fig. 7 and 8, respectively. The LOLH
of M3 is about half of that of M2 every year. Similar situations
can be observed with respect to the EENS. It implies that when
the uncertainty of ramping is high, M3 has less expected load
shedding and total cost, outperforming its rivals.

4) Number of Slots in Linearized Annual Net Load Duration
Curve: The number of slots in the linearized net load duration
curve is a trade-off between accuracy and efficiency. On
the one hand, it should be adequate to well represent the
load behaviors. On the other hand, it should be as small as
possible for the sake of reducing computational burden. Since
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the efficient value for the number of slots depends on the
parameters of cases, we use a heuristic method which divides
the range of load, i.e., maximum load level minus minimum
load level, equally into several slots. We have tested different
number of slots for one year to find an appropriate value, and
the results are listed in Table VI. As to M3, the difference of
objective values between the four-slot model and the eight-slot
model is only 0.1%, but the computational time is doubled.
Thus, in this case, four slots are adequate to represent the net
load behavior while maintaining the accuracy of results.

TABLE VI
OBJECTIVE VALUES AND COMPUTATIONAL TIME WITH DIFFERENT

NUMBER OF SLOTS

Objective Value (M$) CPU Time (s)
Num. of Slots 4 6 8 4 6 8

M1 235.78 236.33 236.25 4.04 5.76 11.61
M2 266.75 267.48 267.59 81.38 220.55 210.20
M3 300.81 300.39 300.44 362.23 654.17 795.38

B. IEEE 118-bus System

To evaluate the practicality of the proposed model and
solution method, we further conduct tests on the IEEE 118-bus
system with 10 selected corridors to build new lines, 5 selected
corridors to install FACTS devices, and 5 selected buses to
install new generators. The peak total net load in the first
year of a 5-year planning horizon is 6500MW. Other detailed
data can be found at http://motor.ece.iit.edu/Data/rotep. The
proposed models are implemented in GAMS [36] and solved
using CPLEX [37]. In this case, we simply select Λy,h as
1, since the aim of the tests on this system is to compare
two solution approaches with increasing number of uncertain
variables, i.e., N = 5, 10, 15, 20. Table VII provides the results
with different number of buses associated with uncertainty. It
can be observed that the total cost increases as more uncer-
tainties are considered, and the proposed solution approach
(Alg.1) improves computational efficiency over the C&CG

approach without the RED technique (Alg.2), where the max-
min subproblems are formulated as MILP problems using the
method given in Section III-B and then solved with CPLEX.

TABLE VII
OBJECTIVE VALUES AND COMPUTATIONAL TIME OF DIFFERENT

MODELS

No. of Objective Value (M$) CPU Time (s)
Busesa Alg.1 Alg.2 Alg.1 Alg.2

M1 - 3001.23 56.27

M2

5 3137.65 3138.68 477.64 466.34
10 3137.91 3138.80 200.86 2527.56
15 3146.88 3147.06 379.43 702.10
20 3148.73 3147.37 388.75 2475.01

M3

5 3138.56 3138.54 755.50 1159.13
10 3165.87 3164.01 456.19 5758.36
15 3235.08 3234.29 1221.83 4081.50
20 3340.64 3340.84 1683.01 13662.31

a Number of buses with uncertainty.
The time consumption of the master problem becomes

larger during iterations, as more and more extreme points are
added into it, especially in the iterations of SPR where the
extreme points generated from SPD are also included. It should
be noted that there are no strict requirements of computational
time in planning problems. Moreover, the SPD and the SPR
can be solved in parallel to accelerate the solution process,
which are solved sequentially in this paper.

C. Real System of Gansu Province in China

To further evaluate the scalability of the proposed method-
ology, tests based on the data of the real system of Gansu
province in China are conducted. The system contains 157
buses, 258 lines and 20 wind farms. The tests are conducted
with 10 selected corridors to build new lines, 6 selected
corridors to install FACTS devices, and 5 selected buses to
install new generators. The planning horizon is 5 years. Table
VIII provides the results.

TABLE VIII
OBJECTIVE VALUES AND COMPUTATIONAL TIME OF DIFFERENT MODELS

Objective Value (M$) CPU Time (s)
Alg.1 Alg.2 Alg.1 Alg.2

M1 11820.01 36.24
M2 11936.99 11936.99 415.50 8392.53
M3 12061.76 12061.78 4225.07 24253.62

It is observed that Alg.1 is still faster than Alg.2 when
applied in the real-world system. The advantage is as much as
one order of magnitude. However, the difficulties of applying
the proposed methodology in solving real systems may lie
in the large scale of the systems and the large number of
candidate sites for new devices, leading to high computational
burdens on the iteration process.

In this case, there are 20 wind farms, so N = 20. The
objective values and computational time of M3 with different
budgets of uncertainty are provided in Table IX. As the budget
increases, both the objective value and the computational time
increase, since the larger the budget is, the more uncertainties
are taken into account, requiring more flexibility resources to
accommodate and increasing the complexity of the model.

V. CONCLUDING REMARKS

The ever increasing uncertain and volatile wind power
generation enforces new requirements of ramping flexibility



11

TABLE IX
OBJECTIVE VALUES AND COMPUTATIONAL TIME WITH DIFFERENT

BUDGETS OF UNCERTAINTY

Budget of Uncertainty 1− βa Objective Value ($M) CPU Time (s)
1 58.9% 11944.23 926.67
4 81.5% 12061.76 4225.07
10 98.7% 12714.78 5549.29

a β is the confidence level related to the budget of uncertainty.

and coordination of construction periods in power system ex-
pansion planning. To address such issues, we have developed a
comprehensive robust planning model incorporating different
flexible resources with different construction periods. We have
constructed a novel uncertainty set to depict the HLRU in
addition to the LDCU. The two types of uncertainties are
decoupled and solved by combining the C&CG and the RED
algorithms. Real-world data is used to verify the effectiveness
of the proposed model. Some remarks are provided as below.

1) The comprehensive multi-year planning model has pro-
vided some insights for power system planners to coordinate
different resources and construction periods under uncertainty.
FACTS is an effective supplemental tool to help to coordinate
different construction periods, since it usually takes much less
time to install and provides transmission flexibility, but it
cannot fully take the place of transmission line. Generators
provide generation-side flexibility to balance load and hedge
against load ramping.

2) The proposed novel uncertainty sets capture the ramping
uncertainty to a large extent while keeping the optimization
problem tractable. By taking the HLRU into account, a more
robust decision can be made with an effective reduction of
expected load shedding, while the possible extremely high
load shedding cost in the worst-case scenario is avoided.
The benefits become greater when the load shedding price is
higher, implying that the proposed model is suitable for high
reliability requirements.

3) Even though the proposed multi-year planning problem
has been formulated as a tractable two-stage robust optimiza-
tion problem, the computational burden is still high, since two
coupled uncertainties are considered. Decoupling and decom-
position techniques have significantly improved computational
efficiency. Tests on the IEEE 118-bus system and a real-world
system have shown that the acceleration of the solution process
can be as much as one order of magnitude compared with the
standard C&CG method without temporal decomposition.

The flexibility provided by FACTS devices is different from
that provided by other emerging generation-side or demand-
side flexibility resources with very fast responses (e.g., energy
storage, demand response) in the following aspects:

i) FACTS devices themselves do not generate active power,
and the flexibility relies on generation/demand-side flex-
ibility resources;

ii) it is specifically used for alleviating congestions as it can
control power flows directly.

The coordination of FACTS devices and very fast response
resources to accommodate uncertainty is one of our ongoing
works. Besides, some reliability indexes will be introduced
to control the conservativeness of the model. The reliability

constraints can be added on the worst-case scenario of the
subproblems, using the formulation similar to the recourse cost
constraints. Additionally, unit commitment will be performed
in the subproblems to better simulate daily operation.
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[22] R. A. Jabr, I. Džafić, and B. C. Pal, “Robust optimization of storage
investment on transmission networks,” IEEE Trans. Power Syst., vol. 30,
no. 1, pp. 531–539, 2015.

[23] B. Zeng and L. Zhao, “Solving two-stage robust optimization problems
using a column-and-constraint generation method,” Oper. Res. Lett.,
vol. 41, no. 5, pp. 457–461, 2013.

[24] H. Ye and Z. Li, “Robust security-constrained unit commitment and
dispatch with recourse cost requirement,” IEEE Trans. Power Syst.,
vol. 31, no. 5, pp. 3527–3536, 2016.

[25] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adap-
tive robust optimization for the security constrained unit commitment
problem,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 52–63, 2013.

[26] X. Wang, Y. H. Song, Q. Lu, and Y. Z. Sun, “Optimal allocation of
transmission rights in systems with FACTS devices,” IEE Proc. - Gener.
Transm. Distrib., vol. 149, no. 3, pp. 359–366, 2002.

[27] G. Vinasco, M. J. Rider, and R. Romero, “A strategy to solve the
multistage transmission expansion planning problem,” IEEE Trans.
Power Syst., vol. 26, no. 4, pp. 2574–2576, 2011.

[28] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable
robust solutions of uncertain linear programs,” Math. Program., vol. 99,
no. 2, pp. 351–376, 2004.

[29] D. J. White, “A linear programming approach to solving bilinear
programmes,” Math. Program., vol. 56, no. 1-3, pp. 45–50, 1992.

[30] L. L. Garver, “Transmission network estimation using linear program-
ming,” IEEE Trans. Power Appar. Syst., vol. PAS-89, no. 7, pp. 1688–
1697, 1970.

[31] N. Alguacil, A. L. Motto, and A. J. Conejo, “Transmission expansion
planning: A mixed-integer LP approach,” IEEE Trans. Power Syst.,
vol. 18, no. 3, pp. 1070–1077, 2003.

[32] PJM, “PJM Homepage.” [Online]. Available: http://www.pjm.com
[33] R. Jiang, J. Wang, and Y. Guan, “Robust unit commitment with wind

power and pumped storage hydro,” IEEE Trans. Power Syst., vol. 27,
no. 2, pp. 800–810, 2012.

[34] Z. Li, W. Wu, B. Zhang, and B. Wang, “Robust look-ahead power
dispatch with adjustable conservativeness accommodating significant
wind power integration,” IEEE Trans. Sustain. Energy, vol. 6, no. 3,
pp. 781–790, 2015.

[35] London Economics International LLC, “Estimating the Value of Lost
Load,” pp. 3–76, 2013. [Online]. Available: www.londoneconomics.com

[36] GAMS, “GAMS Homepage.” [Online]. Available: http://www.gams.com
[37] CPLEX, “CPLEX Optimizer.” [Online]. Available: https://www-01.

ibm.com/software/commerce/optimization/cplex-optimizer

Jia Li received the B.S. degree in electrical engi-
neering from Tsinghua University, Beijing, China,
in 2012. He is currently pursuing the Ph.D. de-
gree at the Department of Electrical Engineering,
Tsinghua University. His current research interests
include power system operation and planning under
uncertainty.

Zuyi Li (SM’09) received the B.S. degree from
Shanghai Jiaotong University, Shanghai, China, in
1995, the M.S. degree from Tsinghua University,
Beijing, China, in 1998, and the Ph.D. degree from
the Illinois Institute of Technology (IIT), Chicago,
in 2002, all in electrical engineering. Presently, he
is a Professor in the Electrical and Computer En-
gineering Department at IIT. His research interests
include economic and secure operation of electric
power systems, cyber security in smart grid, renew-
able energy integration, big data analytics, electric

demand management of data centers, and power system protection.

Feng Liu (M’10) received the B.Sc. and Ph.D.
degrees in electrical engineering from Tsinghua Uni-
versity, Beijing, China, in 1999 and 2004, respec-
tively. Dr. Liu is currently an Associate Professor of
Tsinghua University. From 2015 to 2016, he was
a visiting associate at the California Institute of
Technology, CA, USA. His research interests include
power system stability analysis, optimal control and
robust dispatch, game theory and learning theory
and their applications to smart grids. He is the
author/coauthor of more than 100 peer-reviewed

technical papers and two books, and holds more than 20 issued/pending
patents. He is a guest editor of IEEE Transactions on Energy Conversion.

Hongxing Ye (S’14-M’16) received his B.S. degree
in Information Engineering and M.S. degree in Sys-
tems Engineering from Xi’an Jiaotong University,
China, and the Ph.D. degree in Electrical Engi-
neering from the Illinois Institute of Technology,
Chicago in 2016. He is currently an Assistant Profes-
sor in the Department of Electrical Engineering and
Computer Science at Cleveland State University. His
research interests include large-scale optimization in
power systems, electricity market, renewable inte-
gration, and cyber-physical system security in smart

grid. He is “Outstanding Reviewer” for IEEE Transactions on Power Systems
and IEEE Transactions on Sustainable Energy in 2015. He received Sigma Xi
Research Excellence Award at Illinois Institute of Technology in 2016.

Xuemin Zhang (M’06) received the B.S. and Ph.D.
degrees in electrical engineering from Tsinghua Uni-
versity, Beijing, China, in 2001 and 2006, respec-
tively. She is currently an associate professor at the
Department of Electrical Engineering of Tsinghua
University. Her research interests include power sys-
tem analysis and control, especially input-to-state
stability, power system complexity and security.

Shengwei Mei (SM’06-F’14) received the B.Sc.
degree in mathematics from Xinjiang University,
Urumqi, China, the M.Sc. degree in operations re-
search from Tsinghua University, Beijing, China,
and the Ph.D. degree in automatic control from
Chinese Academy of Sciences, Beijing, China, in
1984, 1989 and 1966, respectively. He is currently
a Professor at Tsinghua University. His research
interests include power system analysis and control,
game theory, and its application in power systems.

Naichao Chang is now a senior engineer of National
Control Center, State Grids Corporation of China.
He got Ph. D degree from the EE Department of
Harbin Institute of Technology, China in 2004. From
2004 to 2006, he worked in the EE Department
of The University of Hong Kong. From 2006 to
2008, he worked in the EE Department of Tsinghua
University as a Post-doc. His main research interests
focus on power systems analysis, simulation and
control.


