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Deliverable Robust Ramping Products
in Real-Time Markets

Hongxing Ye, Member, IEEE, and Zuyi Li, Senior Member, IEEE

Abstract—The increasing penetration of variable energy re-
sources has led to more uncertainties in power systems. Flexible
Ramping Products (FRP) have been adopted by several electricity
markets to manage the uncertainties. We reveal that neglected
line congestion for FRP may not only cause infeasibility, but also
result in a failure of cost recovery. To address the deliverability
issues on FRP, this paper proposes a new concept, Deliverable
Robust Ramping Products (DRRP), in real-time markets. The
DRRP includes generation ramping reserve and generation
capacity reserve. The DRRP is deliverable and immunized against
any pre-defined uncertainty. It also fully addresses the bid cost
recovery issue caused by the line congestion in existing FRPs.
The prices of DRRP are derived within the Affine Adjustable
Robust Optimization (AARO) framework. These prices can be
used to identify valuable reserves among available reserves and
quantify the values of flexible resources that provide reserves.
This paper also proposes a general approach to obtaining the
time-decoupled prices for DRRP and generation, which can be
used for the market settlement of the first interval only in real-
time markets. Simulations on a 3-bus system and the IEEE 118-
bus system are performed to illustrate the concept of DRRP and
the advantages of DRRP compared to existing FRP.

Index Terms—Ramping Reserve, Capacity Reserve, Marginal
Price, Ramping Products, Robust Optimization

NOMENCLATURE

Indices
i, k, l, t index for unit, uncertainty, line, and time
m,n index for bus

Notations and sets
Rx the set of real x-vectors
Rx×y the set of real x× y matrices
L(·) Lagrangian function
(·)∗ optimal value of a variable
C(·) cost function
G(m) set of units located at bus m

Constants
Nb, Ng, Nl number of buses, units, and transmission lines
Nk number of uncertainty constraints
T number of time intervals
δ timespan of one interval (minutes)
dm,t,d aggregated equivalent load demand at bus m

at t, d = [d1,1 · · · dNb,T ]>

F̄l,F branch flow limit, abstract vector F ∈ R2NlT

Γl,m shift factor for line l and bus m
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Pmin
i , Pmax

i minimum and maximum generation outputs
Rup

i , R
down
i unit ramping up/down limits (MW/minute)

D time-load incidence matrix, D ∈ RT×NbT

A,Ri abstract matrix and vector for (4)-(6), A ∈
R4T×T , Ri ∈ R4T .

Γi,Γd abstract shift factor matrix for unit i and load
S, h polyhedron uncertainty set matrix and vector

Variables
Gi generation adjustment matrix, Gi ∈ RT×NbT

π prices. πe
i is the energy LMP for unit i, πe

i ∈ RT ;
πr

i is the reserve price vector for unit i, πr
i ∈

R4T .
Pi,t generation output, Pi,t ∈ R
Pi generation vector, Pi = [Pi,1 · · ·Pi,T ]> ∈ RT

P̂ i generation re-dispatch vector, P̂i ∈ RT

Qr,u
i,t, Q

r,d
i,t generation ramping reserve, Qr,u

i,t ∈ R, Qr,d
i,t ∈ R

Qc,u
i,t, Q

c,d
i,t generation capacity reserve, Qc,u

i,t ∈ R, Qc,d
i,t ∈ R

QFRP,u
i,t upward ramping products in the existing FRP

model, QFRP,u
i,t ∈ R

QFRP,d
i,t downward ramping products in the existing FRP

model, QFRP,d
i,t ∈ R

QFRP,u
Req,t upward ramping requirement in the existing FRP

model, QFRP,u
Req,t ∈ R

QFRP,d
Req,t downward ramping requirement in the existing

FRP model, QFRP,d
Req,t ∈ R

ε, εm,t uncertainty vector and uncertainty at bus m at t,
ε ∈ RT×Nb , εm,t ∈ R

λ, αi, η Lagrangian multipliers for constraints (18,20,22)
γ, βi, τ Lagrangian multipliers for constraints (19,21,23)
Θi credits to uncertainty mitigator i

I. INTRODUCTION

THE renewable energy sources (RES), such as wind power
generation, and price-sensitive demand response (DR)

have attracted a lot of attentions recently. The total installed
capacity of wind power in the U.S. reached 47 GW at the
end of 2011 [1]. Several ISOs/RTOs, such as PJM, ISO New
England, NYISO, and CAISO have initiated DR programs in
their markets [2]. The essential objective to use renewable
energy and initiate DR programs in electricity markets is
to maximize the market efficiency as well as to protect the
environment. However, they also pose new challenges to the
system operators in electricity markets. Due to its intrinsic
characteristics, it is sometimes hard to accurately predict the
amount of available renewable energy. For instance, large-scale
wind production varies from -20% to 20% of the installed
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wind capacity in Denmark on an hourly basis [3]. Prediction
error for aggregated wind farm output by existing state-of-the-
art method may range from 5% to 20% of the total installed
capacity [4]. In the meantime, the amount of un-predictable
loads also increases in the wholesale market as the forecasting
of price-sensitive loads relies on the forecasted price as input,
which itself has significant error.

Surviving uncertainties is fundamentally important for the
reliable and secure operation of a power system. If the system
with pre-planned schedule cannot follow the deviation of
the wind power and load, the system operator may have
to curtail wind energy or shed load in the real-time market
(RTM). In order to maintain the reliability of the system, the
ISO/RTO has to increase the ramping capability of the system
to compensate the variations of wind energy and load in a
short time [5], [6]. More efficient and reliable methods are
required to determine the optimal reserves when the uncer-
tainty level is high. Recently stochastic and robust approaches
are proposed to address the issues related to uncertainties
in electricity markets. At the same time, market designers
are also seeking effective market mechanism to address the
uncertainty issues. For instance, intraday market (IDM) is now
established between day-ahead market (DAM) and RTM in
European countries since uncertainties on the intraday level
are significantly smaller compared to those on the day-ahead
level [7]. In the U.S., hour-ahead scheduling process (HASP)
is employed by the California ISO [8].

Typical approaches to solving stochastic SCUC are scenario
based [9], [10]. The basic idea is to generate enough samples
for uncertain parameters with an assumption of their prob-
ability distribution function (PDF). Those samples are then
modeled in a Mixed Integer Linear/Quadratic Programming
(MILP/MIQP) problem. The two main drawbacks of the
scenario-based approaches are that it is hard to obtain accurate
PDF in some circumstances, and uncertainty accommodation
is not guaranteed. In the meantime, the MILP/MIQP problem
becomes intractable when the sample size is large. Compared
to stochastic optimization, the two largest merits of robust
optimization are that the solution can be immunized against
all uncertainties and PDF is not required. In [11], [12], robust
SCUC problem is solved in two stages. The first stage is
to determine the unit commitment (UC) solution which is
immunized against the worst case with the lowest cost. In
the second stage, a feasible solution to SCED is obtained.
Affinely adjustable robust optimization (AARO) models are
proposed recently [13]–[16]. They employ an affine function
to adjust the generation output following the load deviation.
Recently, we propose an efficient robust SCUC model with a
fast solution approach [17], [18].

Although applying robust optimization in SCUC/SCED
receives a lot of attentions from researchers, it still remains
a big challenge on how to credit the flexibilities in the U.S.
electricity markets within the robust optimization framework.
In the existing Ancillary Service (AS) Market, the reserve
requirements are determined in advance [19]. The amount of
required reserves is generally obtained from a large number
of Monte Carlo simulations for the contingencies [20]. With
the help of the AARO, those reserves are determined in one

shot based on uncertainty information. Then a critical issue is
how to price those reserves when there are no explicit reserve
requirement constraints. On the other hand, some reserves are
free byproducts in the co-optimization approach [19]. They are
kept because the market participants want to get the energy
profits. Moreover, some reserves are scarce resources due to
their deliverability. These observations indicate that not all the
available reserves in the system are valuable from the system
operator’s point of view.

In many countries, electricity markets are still evolving with
the challenges of uncertain energy resource and load [21].
Authors in [22] assessed the time-coupled constraints and
the length of look-ahead horizon in the market models. The
Flexible Ramping Product (FRP) is proposed by California
ISO [23] to integrate more renewables and meet the ramping
requirements. In 2016, the Midcontinent Independent System
Operator (MISO) also deployed a similar ramping capability
product [24] based on [25]. Authors in [25] proposed an
approach to address the reserve deliverability on a zonal basis
considering discrete contingencies. It should be emphasized
that bus-level delivery of the ramping capabilities, which is
a very challenging issue in theory, is not considered for
FRP in [23]–[25]. In addition, these existing FRP normally
ignore the feasibility between intervals after the uncertainty
accommodation. Similar to the traditional reserves, another
challenge of these FRP is how to determine the ramping re-
quirement requirements. This paper tries to propose new ideas
to overcome these challenges. The three major contributions
of this paper are listed as follows.

1) A new concept, Deliverable Robust Ramping Products
(DRRP), is proposed within the AARO SCED frame-
work. DRRP includes generation ramping reserve and
generation capacity reserve. The ramping reserve is the
unused ramping capability of a generator when part of
its ramping capability is “locked” in the SCED schedule.
The capacity reserve is the unused generation capacity
of a generator. Different from existing ramping products,
these reserves are immunized against any uncertainty.
To our best knowledge, this is the first time to consider
ramping products in the robust optimization framework.

2) The prices for DRRP are derived within the robust co-
optimization framework. With the help of the price in-
formation, the valuable reserves can be easily identified
among the available reserves. The proposed prices also
address the energy bid cost recovery issue in the existing
FRP due to line congestion.

3) A general approach to obtaining the time-decoupled
price signal is also proposed for DRRP. It can be used
for settling the first interval only in the real-time market.

The rest of this paper is organized as follows. The AARO
SCED is presented in Section II. The DRRP is defined and
its marginal price is derived in Section III. Then how to
settle the first interval of the RTM is proposed in Section IV.
Case studies for the 3-Bus and the IEEE 118-Bus systems are
presented in Section V. Section VI concludes this paper.
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II. AFFINELY ADJUSTABLE SCED

A. Conventional SCED

In electricity markets, RTOs/ISOs normally operate two
markets including DAM and RTM (or balancing market) [26].
The majority of the trades is cleared in DAM via SCUC and
SCED [26], and SCED is normally performed periodically in
RTM. This paper mainly focuses on the RTM. In RTM, SCED
runs over rolling periods and the scheduling time horizon
is normally 1-2 hours with each time interval being 5 or
15 minutes. One of the most important tasks of RTM is to
balance the system by adjusting unit dispatch and rescheduling
fast-start generators. In this section, the conventional SCED
used in RTM is presented. The ISOs minimize the bid-based
costs based on generation supply offers submitted by market
participants (i.e., generators).

min
∑
i

∑
t

C(Pi,t) (1)

The function C(·) can be in quadratic or piece-wise lin-
ear form. The objective function (1) is subject to system
generation-load balance constraint as formulated in (2). Other
constraints, such as system spinning reserve and emission
constraints, can also be included [27].∑

i

Pi,t =
∑
m

dm,t,∀t (2)

The line flow constraints are formulated as

−F̄l ≤
∑
m

Γl,m

 ∑
i∈G(m)

Pi,t − dm,t

 ≤ F̄l,∀l, t. (3)

The online unit generation output is subject to the following
constraints including unit capacity limits (6) and unit ramping
up/down limits (4), (5), where δ is the timespan from t to t+1.

Pi,t − Pi,(t−1) ≤ Rup
i δ, ∀i, t (4)

−Pi,t + Pi,(t−1) ≤ Rdown
i δ, ∀i, t (5)

Pmin
i ≤ Pi,t ≤ Pmax

i ,∀i, t (6)

For notation brevity, the SCED problem can be formulated as
follows using matrix and vector forms.

min
Pi,∀i

∑
i

C(Pi) (7)

s.t.
∑
i

Pi = Dd, (8)

APi ≤ R (9)∑
i

ΓiPi − Γdd ≤ F , (10)

where (7) stands for the operation cost; (8) denotes the load
balance constraints; (9) is the compact form of (4)-(6); (10)
represent the transmission constraints. Pi ∈ RT is the output
vector of unit i. Matrix Γi ∈ R2NlT×T , and matrix Γd ∈
R2NlT×NbT .

Due to the forecasting errors of renewables and loads,
ISOs/RTOs need to run SCED on a rolling basis in real time
to balance the system. Recently, some approaches have been
introduced to solve the SCUC/SCED problem considering

uncertainties due to variations of load and renewables. Both
stochastic SCUC/SCED and robust SCUC/SCED are studied
intensively when considering uncertainties.

To our best knowledge, this paper is the first work on
robust ramping products which can be immunized against any
uncertainty. Hence, the following assumptions are made so
that we can focus on the core concept.

• Transmission loss is ignored in the SCED problem.
• The proposed approach is for ex ante dispatch and ex

ante pricing.
• Units bid only energy price. The reserve bid is zero.
• Uncertainty comes from loads. Renewables are treated as

negative loads. Other uncertainties such as contingencies
are not discussed in this paper.

• Uncertainty set information is available to the ISO/RTO.

B. Affinely Adjustable Robust SCED

The basic idea of AARO optimization can be traced back to
[15], in which a linear “feedback” in control theory is used to
adjust dispatch with the realization of load. Authors in [13],
[14], [28] applied it to solve SCED problem. In the AARO
SCED, the generation output is affinely adjusted according to
the uncertainties,

P̂i = Pi +Giε,∀i, (11)

where matrix Gi ∈ RT×NbT is the affine adjustment matrix. It
should be noted that Gi is a decision variable in the proposed
approach. Pi ∈ RT and P̂i ∈ RT are the base dispatch and
adjusted dispatch, respectively. ε ∈ RNbT is the uncertainty
vector (i.e., deviation of loads from forecasted values). ε can
be regarded as in-elastic loads that ISOs cannot control. The
new unit dispatch can be regulated based on the load deviation.
It is noted that ε ∈ U , and

U := {ε : Sε ≤ h}, (12)

where matrix S ∈ RNk×NbT and vector h ∈ RNk . U is a
polyhedron which is general enough to include more than just
the lower and upper bounds for uncertainty. The entry in h is
considered as uncertainty level which is positive. The AARO
SCED, denoted as (ROP), can be formulated as

(ROP) : min
Pi,Gi

∑
i

C(Pi) (13)

s.t.
∑
i

P̂i = D [d+ ε],∀ε ∈ U (14)

AP̂i ≤ Ri,∀i,∀ε ∈ U (15)∑
i

ΓiP̂i − Γd [d+ ε] ≤ F ,∀ε ∈ U (16)

(11),∀ε ∈ U .

The problem (ROP) is converted to a computationally tractable
problem (P) as follows, where the constraints including uncer-
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tain parameters are exactly reformulated.

(P) : min
Pi,Gi,ρi,ζ

∑
i

C (Pi) (17)

s.t. (λ)
∑
i

Pi = Dd (18)

(γ)
∑
i

Gi = D (19)

(αi ≥ 0) −Ri +APi + ρ>i h ≤ 0,∀i (20)

(βi) AGi − ρ>i S = 0,∀i (21)

(η ≥ 0) −F − Γdd+
∑
i

ΓiPi + ζ>h ≤ 0(22)

(τ )
∑
i

ΓiGi − Γd − ζ>S = 0 (23)

(ξ, σ) ρi ≥ 0, ζ ≥ 0, (24)

where ρi> ∈ R4T×Nk and ζ> ∈ R2NlT×Nk are also variables.
(18) and (19) are derived from (11), (14), and (8). (20)-(23) are
obtained from strong duality. Problem (P) is convex and can
be solved efficiently using commercial solvers such as CPLEX
and GUROBI. It can be observed that no PDF information is
required to solve (P).

Different from the standard SCED (7)-(10), extra terms
ρ>i h and ζ>h are added in inequality constraints (20) and
(22), respectively, in problem (P). As ρ>i ≥ 0, ζ> ≥ 0 and
h ≥ 0, ρ>i h and ζ>h are non-negative. It indicates that
certain unit and transmission constraints in standard SCED
are replaced with stronger constraints in the robust frame-
work. Thus, the system actually keeps certain flexibilities for
uncertainty accommodation. These flexibilities are also called
reserves. There are four salient features in this model.
• First, the reserves are fully deliverable, which means

the useful reserves can also be delivered to the desired
buses. In contrast, transmission line congestions are not
considered in the existing FRP model.

• Second, the reserves are immunized against any uncer-
tainty in the following intervals. The existing FRPs are
just modeled based on the ramping requirements at each
time interval independently, but the transition from P̂i,t

to P̂i,t+1 is ignored.
• Third, the polyhedron in equation (12) can reduce the

conservativeness.
• Fourth, the ramping requirements are determined auto-

matically.

III. DELIVERABLE ROBUST RAMPING PRODUCTS

An Uncertainty Mitigator (UM) refers to a flexible resource
provider that participates in the management of uncertainties.
The flexible resources include generators with available ramp-
ing capabilities and adjustable loads. UMs have to keep certain
reserves in order to accommodate the uncertainties. Compared
to (9), constraint (20) may be binding even when the scheduled
dispatch does not reach the capacity limits (6) or ramping
limits (4)-(5). Based on the optimal solution to (P), the DRRP
can be calculated. We use subscript ∗ to denote the optimal
solution to (P) in this paper.

Time Interval

Power
 (MW)

t t+1

Pi,t

Pi,t+1  

LR

RR

Fig. 1. Illustration of Upward Ramping Reserve (LR: Locked Ramping, RR:
Ramping Reserve, Rup

i : Upward Ramping Rate Limit, δ: Timespan)

A. Definitions of Deliverable Robust Ramping Products

The generation ramping reserve is defined as the unused
ramping capability of a generator in a given timespan δ. In
order to get the ramping reserve, we first define the locked
ramping capability as

Qr,l
i,t , P ∗i,t+1 − P ∗i,t,∀i, t, (25)

which is the scheduled ramping capability in the given times-
pan δ (i.e., from t to t+1), hence cannot be used for uncertainty
accommodation. Then, the generation ramping reserve in the
given timespan δ can be formulated as

Qr,u
i,t , Rup

i δ −Q
r,l
i,t,∀i, t, (26)

Qr,d
i,t , Rdown

i δ +Qr,l
i,t,∀i, t, (27)

where Qr,u
i,t and Qr,d

i,t are the upward and downward generation
ramping reserves, respectively. The concept of the upward
ramping reserve is illustrated in Fig. 1. The ramping reserve
is the available ramping rate less the locked ramping. The
ramping reserve guarantees that the uncertainty mitigator still
has additional ramping capability during the scheduled ramp-
ing process. In the existing AS market, the “locked” ramping
is normally ignored for the spinning reserves [29], [30]. In
the RTM, the time resolution is generally 5 or 15 minutes.
So, if we ignore the ramping process, there is a chance
that the system cannot provide enough ramping capability to
accommodate the uncertainties. In contrast, the time resolution
is one hour in DAM, and the units have enough time to
redispatch even if the locked ramping is ignored [19], [29].

The generation capacity reserve is defined as the unused
generation capacity of a generator, i.e.,

Qc,u
i,t , Pmax

i − P ∗i,t,∀i, t, (28)

Qc,d
i,t , P ∗i,t − Pmin

i ,∀i, t, (29)

where Qc,u
i,t and Qc,d

i,t are the upward and downward generation
capacity reserves, respectively. From the system’s point of
view, the total capacity reserves are fixed when the unit
commitment and load level are determined.

The flexibility UM can provide is subject to both the
ramping rate limit and the capacity limit. They contribute to
the uncertainty management and load following in the AARO
SCED approach. They can be delivered to the desired location
while respecting network constraints (i.e., deliverability) and
can be immunized against all predefined uncertainties (i.e.,
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robustness). Due to the deliverability and robustness of these
reserves, they are called Deliverable Robust Ramping Prod-
ucts.

B. Marginal Prices of DRRP

In most generation and reserve co-optimization approaches
in AS market, the explicit reserve requirement constraint is
modeled [19], [20], [31]. The shadow prices of this type
of constraint is employed to derive the reserve price which
reflects the coupled effects of the generation and reserve.
Instead of setting the reserve manually and heuristically based
on Monte Carlo simulations, the reserves in the AARO SCED
are determined automatically in one shot. Although it has
obvious advantages over the traditional reserve determination,
it also poses new challenges on reserve price derivation. The
existing pricing approaches cannot be used directly [19], [20]
due to the lack of explicit reserve requirement constraints.

While the amount of reserves can be calculated according
to (26)-(29), the question is how to set the prices for them.
On the one hand, it is well known that not all the reserves
are deliverable for uncertainty accommodation due to network
constraints. On the other hand, the generation and reserve are
coupled together in the RTM even if the reserve bid price
is zero [32], and the market clearing price for reserve has
certain relations with that for energy. In this paper, we call
the reserve in (26)-(29) available reserve. If a small increment
of the reserve amount causes change of the operation cost in
(P), then this type of reserve is called valuable reserve. To
determine the exact value of a reserve, we derive the marginal
prices for the reserve according to the Lagrangian function in
Appendix A.

The ramping reserve price for UM i is defined as the
marginal cost due to a unit decrement of the generation
ramping rate of UM i. The capacity reserve price for UM
i is defined as the marginal cost due to a unit decrement
of the generation capacity of UM i. These prices can be
explained as the opportunity cost. They can be obtained from
the Lagrangian function at the optimal point as

πr
i , −

∂L∗

∂Ri
= α∗i , (30)

where πr
i ∈ R4T . Note that α∗i consists of Lagrangian

multipliers for unit ramping limits and unit capacity limits.
Denote the prices for upward and downward ramping reserves
as πr,ru

i and πr,rd
i , respectively. Denote the prices for upward

and downward capacity reserves as πr,cu
i and πr,cd

i , respectively.
We have

πr
i =


πr,ru
i

πr,rd
i

πr,cu
i

πr,cd
i

 .
The reserve provided by i is valuable if and only if πr

i is
non-zero.

The LMP for AARO SCED can be obtained based on its
definition. It is the marginal cost due to a unit increment of
the load. For unit i, it is formulated as

πe
i , λ∗ − Γ>i η

∗, (31)

where πe
i ∈ RT . πe

i also consists of energy component and
congestion component.

C. Credits to DRRP

Within the AARO framework, UMs help the system with-
stand the “load deviation” in the future. As the generation and
the reserve are coupled together, the credit for reserve should
reflect the coupling effect. The opportunity cost of providing
the reserve exists in the AARO framework. In general, it
is also the reserve credit entitled to the reserve provider in
the electricity market. The total reserve credit to UM i (or
opportunity cost) is

Θi =
(
Ri −AP ∗i

)>
πr
i, (32)

which is the product of the reserve price and the reserve
amount. In fact, the reserve price πr

i reflects how much “value”
the reserve has. Ri −AP ∗i reflects the available reserve,
which is the reserve quantity at each time interval. Specifically,
the total reserve credit entitled to i at t is

θi,t = πr,ru
i,tQ

r,u
i,t + πr,rd

i,tQ
r,d
i,t + πr,cu

i,t Q
c,u
i,t + πr,cd

i,t Q
c,d
i,t. (33)

Only when the reserve is a valuable reserve (i.e. πr,ru
i,t +

πr,cu
i,t 6= 0 or πr,rd

i,t + πr,cd
i,t 6= 0) can UM i get the reserve

credit. Otherwise, the reserve credit to UM i is zero even if
the available reserve it provides is non-zero. There are similar
phenomena in the traditional zonal-based reserve market. For
example, the reserve price $0/MWh at a specific zone occurs
when the cleared system reserve is higher than the required
amount in Case I of Section VI [19].

The proposed approach is for ex ante dispatch and ex ante
pricing. With the uncertainty realization, the generators are
supposed to be re-dispatched according the adjustment matrix
Gi. At the end of the last interval, all real energy produced
by generators are available. The deviations can be calculated
and settled based on the ex ante prices.

IV. TIME-DECOUPLED DRRP

The approach proposed above can be implemented in the
market to settle all time intervals, which is a simple process.
In the real-time market, the ISO may prefer to clear the market
and settle the first time interval only [22]. In this section,
we propose a general approach for the settlement of the first
interval based on a time-decoupled DRRP model. The existing
FRP model, which also settles the first interval, is presented
for comparison.

A. The Exiting FRP Model

The general idea of the FRP model in [23] is to model the
future load ramping and uncertainties at the current interval.
The ISOs try to make the prices reflect the energy cost and
opportunity cost at each interval only. Without regulation, spin-
ning, and non-spinning reserves, a simple illustrative model for
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the FRP can be formulated as

min
Pi,t,Q

FRP,up
i,t ,QFRP,down

i,t ,∀i,t

∑
i,t

C(Pi,t)

s.t. (2)− (5) (34)
Pmin
i ≤ Pi,t +QFRP,up

i,t ≤ Pmax
i ,∀i, t (35)

Pmin
i ≤ Pi,t −QFRP,down

i,t ≤ Pmax
i ,∀i, t (36)

0 ≤ QFRP,up
i,t ≤ Rup

i δ, ∀i, t (37)

0 ≤ QFRP,down
i,t ≤ Rdown

i δ, ∀i, t (38)∑
i

QFRP,up
i,t ≥ QFRP,up

Req,t ,∀t (39)∑
i

QFRP,down
i,t ≥ QFRP,down

Req,t ,∀t (40)

where QFRP,up
Req,t and QFRP,down

Req,t are the ramping requirements
at t determined by the ISOs. Historical data for the load
ramping and uncertainty can be used in ramping require-
ment determination. It can be observed that the transmission
constraints for QFRP,up

i,t and QFRP,down
i,t are not enforced. It

should be noted that the price of the existing ramping product
can also be interpreted as having two components according
to the optimality conditions. For example, the price of the
upward ramping product, which is the shadow price of (39),
is composed of a capacity component from (35) and a ramping
component from (37).

B. Time-decoupled DRRP

The proposed DRRP can be immunized against any uncer-
tainty. The ramping requirements are determined automatically
in the problem (P), instead of using the heuristic methods.
However, the challenge to settle the first interval is that the
model is time-coupled. The unit increment of the load at the
first interval may impact the cost in other intervals, and the
LMPs at different intervals are coupled together due to the
ramping constraints. At the same time, the reserves withheld
at the first interval may be used for the following intervals.
To get the price signals for the first interval, the following
principles are followed.

1) The ISO desires to make the best decision (i.e. the
minimum cost at interval 1 and the minimum total cost
in all intervals) based on currently available information.

2) The reserves (i.e., flexibilities) withheld at interval 1 can
be immunized against any uncertainty in the following
intervals. The reserves are deliverable. A generator can
adjust from P̂i,t to P̂i,t+1 after uncertainty accommoda-
tion.

3) LMP is defined as the additional cost at interval 1 due to
the unit increment of the load at interval 1 while the load
ramping and uncertainties in the other intervals remain
the same.

4) Ramping and capacity reserve prices are the opportunity
costs at interval 1 only. As only the first interval is
settled, the reserve provider only gets compensation for
the first interval.

To settle the first interval, we should solve another problem
after solving problem (P). The problem is formulated as

(PM) : min
Pi,Gi,ρi,ζ

∑
i

C (Pi,1)

s.t. (18)− (24)

(µ̃ ≥ 0)
∑
i

C (Pi) ≤ Z∗ (41)

where Z∗ is the optimal value to problem (P). The objective
function of (PM) is the operation cost of the first interval
only. Constraint (41) ensures the optimality of the cost of all
intervals. Warm-start techniques of solvers can be used here.

With the definitions of LMP in principle 3) and reserve
prices in principle 4), the new LMP and reserve price at the
first interval are

π̂e
i,1 = 1>π̃e

i − µ̃ · 1
>πe

i,∀i, (42)

π̂r,ru
i,1 = 1>π̃r,ru

i − µ̃ · 1
>πr,ru

i ,∀i, (43)

π̂r,rd
i,1 = 1>π̃r,rd

i − µ̃ · 1
>πr,rd

i ,∀i, (44)

π̂r,cu
i,1 = 1>π̃r,cu

i − µ̃ · 1
>πr,cu

i ,∀i, (45)

π̂r,cd
i,1 = 1>π̃r,cd

i − µ̃ · 1
>πr,cd

i ,∀i, (46)

where 1 ∈ RT is a vector with all elements being 1; π̃e
i,

π̃r,cu
i , π̃r,cd

i , π̃r,ru
i , and π̃r,rd

i are intermediate prices calculated
based on the dual variables in (PM); πe

i, π
r,cu
i , πr,cd

i , πr,ru
i , and

πr,rd
i are the prices calculated according to (30) based on the

dual variables in (P), respectively. Refer to Appendix-C for
the derivation.

In (42)-(46), all the prices are composed of two terms. The
first term is the summation of the prices calculated based on
(PM). It reflects the impact of the optimality of dispatches
in the first interval on the time-decoupled price. The second
term is the summation of the prices in (P) multiplied by µ̃.
It reflects the impact of the optimality of dispatches in all
intervals on the time-decoupled price. The summations in both
terms reflect the impact of ramping constraints, which couple
the prices at different intervals together. (43)-(46) reflect the
opportunity cost of unit i keeping its generation level at P ∗i,1,
because P ∗i,1 may not be optimal from the first interval’s point
of view, although it is optimal from all intervals’ point of view.

As only the first interval is settled, there is no locked
ramping, i.e.,

Qr,l
i,t = 0.

Therefore, the ramping reserves are changed to

Q̂r,u
i,1 = Rup

i,tδ, Q̂r,d
i,1 = Rdown

i,t δ.

The capacity reserves remain the same.

V. CASE STUDY

A 3-Bus system and the modified IEEE 118-bus system
are studied in this section to illustrate the concepts of avail-
able/valuable ramping/capacity reserves and the associated
prices, as well as their impacts on market participants. The
simulations are carried out using CPLEX 12.5 on PC with
Intel i7-3770 3.40GHZ 8GB RAM.
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Fig. 2. One-line Diagram for 3-Bus System

TABLE I
LINE DATA FOR THE 3-BUS SYSTEM

Line From To Reactance (p.u.) Flow Limit (MW)

1 1 2 0.1 82
2 1 3 0.15 100
3 2 3 0.1 50

A. 3-Bus System

The one-line diagram for the 3-Bus system is presented in
Fig. 2. There are two units and one wind farm in the system.
The generation output from the wind farm is modeled as
negative load. All loads are aggregated net load in L1 and
L2. The transmission line and unit parameters are presented
in Table I and Table II, respectively. For simplicity, three
time intervals are studied and a single-segment incremental
cost (IC) is employed to represent the fuel cost. The time
resolution is 15 minutes. It is assumed that both units in the
system are committed, which is determined in the DAM. Load
at the current interval (i.e., t=1) is assumed to be accurate.
Loads at t=2 and t=3 are forecasted based on current available
information, and forecasting errors may exist. Assume that
the expectation of uncertainties at t=2 and t=3 are 0, and
their probability distribution is unknown. Ex ante dispatch and
pricing are studied in this section. Three cases are simulated
based on the data provided above.
• Case 1: Transmission flow limits are enforced. Two

settlement options, i.e. settling all intervals and settling
the first interval only, are illustrated.

• Case 2: Transmission flow limits are enforced. The draw-

TABLE II
UNIT DATA FOR THE 3-BUS SYSTEM

Unit # Bus # IC ($/MWh) Pmax* Pmin* Rup** Rdown** P0
*

1 1 10 180 0 25 25 120
2 2 25 80 0 10 10 10

* MW ** MWh/15min

TABLE III
LOAD DATA FOR THE 3-BUS SYSTEM (MW)

t Bus # Forecasted LB UB Actual

1 2 80 80 80 80
3 60 60 60 60

2 2 90 82.5 97.5 97.5
3 65 62 68 68

3 2 95 87 103 95
3 72 69 75 73

TABLE IV
GENERATION AND UPWARD RESERVES IN THE DRRP MODEL WITH

TRANSMISSION CONSTRAINTS

t Generationa Cap. Reservea Ramp. Reserveb

G1 G2 G1 G2 G1 G2

1 126.5 13.5 53.5 66.5 19.85 0.15
2 131.65 23.35 48.35 56.65 13.05 9.95
3 143.6 23.4 36.4 56.6 25 10
1 126.5 13.5 53.5 66.5 25 10

a MW; b MWh/15min

TABLE V
LMP AND UPWARD RESERVE PRICES IN THE DRRP MODEL WITH

TRANSMISSION CONSTRAINTS

t LMPa Cap. Res. Pricea Ramp. Res. Pricec

Bus1 Bus2 Bus3 G1 G2 G1 G2

1 10 10 10 0 0 0 15
2 10 32.5 23.5 0 0 0 7.5
3 10 32.5 23.5 0 0 0 0
1 10 25 19 0 0 0 15

a $/MWh; b $/(MWh/15min)

backs of the existing FRP model are analyzed.
• Case 3: Transmission flow limits are not enforced. It is

equivalent to having all the loads and generators at one
bus. The comparisons are presented for the existing FRP
model and the proposed DRRP model.

1) Case 1: There are two options for the ISO to settle the
market with the proposed DRRP model. One is to settle all
the intervals according to the solutions to (P), and the other
is to only settle the first interval according to the solutions
to (PM). The dispatch/reserve and prices obtained from the
DRRP model are shown in Table IV and Table V, respectively.
The first three rows in the two tables show the solutions to
problem (P), and the last row highlighted in pink lists the
solutions to problem (PM).

We first analyze the scenario of settling all intervals. We just
need to solve problem (P) for all time intervals (t=1, t=2, t=3)
once at the beginning of t=1. With the adjustment matrices,
any load deviation can be followed by re-dispatching G1 and
G2. The adjustment matrix of G1 is

G1 =

1 1 0 0 0 0
0 0 0.98 1 0 0
0 0 0 0 0 0.4

 ,
and the adjustment matrix of G2 is

G2 =

0 0 0 0 0 0
0 0 0.02 0 0 0
0 0 0 0 1 0.6

 .
For example, if the loads at Bus 1 and Bus 3 at t=2 are
increased to 97MW and 67.5MW, respectively, then the units
can be re-dispatched based on the adjustment matrices to
131.65 + 0.98 · 7 + 1 · 2.5 = 141.01MW and 23.35 + 0.02 ·
7 + 0 · 2.5 = 23.49MW. In this case, the settlement on energy
should also be adjusted based on these deviations.

It is observed that the capacity reserves are not scarce
resources, i.e. the on-line capacity is adequate. According to
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TABLE VI
CREDITS ENTITLED TO GENERATORS BASED ON RESERVE PRICES WHEN

ALL INTERVALS ARE SETTLED IN THE BASE CASE ($)

t G1 G2
1-2 0 15 · 0.15 · 0.25 = 0.5625
2-3 0 7.5 · 9.95 · 0.25 = 18.6563

the definition in this paper, they are just available reserves
but not valuable reserves. In contrast, the prices of upward
ramping reserve at t=1 and t=2 are non-zeros. According to
the definition in this paper, they are valuable reserves. Table VI
shows the reserves credits in the base case. Uncertainty
mitigator G2 is entitled to $0.56 for the ramping reserves
between t=1 and t=2, and is entitled to $18.66 for the ramping
reserves between t=2 and t=3. The credit is calculated based
on (32). It is noted that the credits are time-coupled, as the
ramping reserve is calculated according to the difference of
the power outputs between two intervals.

The LMP is $10/MWh at t=1 for Bus 2 where G2 is located.
It seems that G2, which has an IC of $25/MWh, cannot recover
its bid-based cost. However, as we settle all the intervals,
G2’s bid-based cost can be recovered from t=2 and t=3. For
example, in the base case, G2’s profit is(

13.5 · (10− 25) + 23.35 · (32.5− 25)

+23.4 · (32.5− 25)
)
· 0.25 + 0.5625

+18.7563 = $56.35.

Compared to the existing FRP model, which only utilizes
prices at t=1, the proposed DRRP model utilizes prices at
t=1, t=2, and t=3, which are actually coupled together. By
settling all intervals, we can take those coupling effects into
consideration.

Next, we analyze the scenario of settling the first interval
only. Although it is easy to settle all intervals based on the
solution to (P) in terms of implementation, some may argue
that setting first interval only is economically more efficient as
more information will be available later. The proposed time-
decoupled DRRP model in Section IV provides the option to
settle the first interval only.

In this scenario, the dispatch instructions at the first interval
by solving problem (PM) are the same as those by solving
problem (P). However, the reserves and prices are different. It
can be observed that the amount of ramping reserve for G2 is
increased from 0.15MWh/15min to 10MWh/15min. The LMP
at Bus 2 increases to $25/MWh from $10/MWh, and the LMP
at Bus 3 increases to $19/MWh. The LMP at Bus 2 is equal
to G2’s bid-based cost. So, G2 can recover its bid-based cost
in this scenario. Its profit is(

13.5 · (25− 25) + 10 · 15
)
· 0.25 = $37.5. (47)

2) Case 2: The existing FRP model does not consider
the congestions caused by delivering the ramping capability,
although the transmission constraints are enforced for the
dispatch. Consistent with the practice in the real-time market,
we solve the FRP model at the beginning of each interval and

TABLE VII
GENERATION AND FRP IN THE FRP MODEL WITH TRANSMISSION

CONSTRAINTS

t Generation a Upward FRP b Downward FRP b

G1 G2 G1 G2 G1 G2

At t=1
1 135.8 4.2 25 0.5 0 0
2 140.8 14.2 13 10 0 0
3 143.6 23.4 0 0 0 0

At t=2 2 142 14.2 12.5 0 25 0
3 143.6 23.4 0 0 0 0

a MW; b MWh/15min.

TABLE VIII
LMP AND FRP PRICES IN THE FRP MODEL WITH TRANSMISSION

CONSTRAINTS

t LMPa Price of FRPb

Bus 1 Bus 2 Bus 3 Upward Downward

At t=1
1 10 10 10 0 0
2 10 40 28 0 0
3 10 25 19 0 0

At t=2 2 10 500 304 0 0
3 10 25 19 0 0

a $/MWh; b $/(MWh/15min)
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Fig. 3. System-wide Load and Ramping Requirement for the FRP Model in
the 3-Bus System

only settle the first interval. The upward ramping requirement
for (39) at interval t is determined as

max
{

0,
∑
m

dm,t+1 −
∑
m

dm,t + max
ε∈U

∑
m

εm,t+1

}
, (48)

and the downward ramping requirement for (40) at interval t
is determined as

max
{

0,
∑
m

dm,t −
∑
m

dm,t+1 −min
ε∈U

∑
m

εm,t+1

}
. (49)

In this example, the upward ramping requirements at t=1 and
t=2 are 25.5MWh/15min and 23MWh/15min, respectively, and
the downward ramping requirements at both t=1 and t=2 are
0MWh/15min. They are illustrated in Fig. 3. The penalty for
the load curtailment is assumed to be $500/MWh. Simulation
results in Table VII and Table VIII reveal two drawbacks of the
existing FRP model compared to the proposed DRRP model.

First, some generators may not recover their bid-based cost.
At t=1, the FRP prices are $0/MWh for the first interval. The
first row of Table VIII shows that the system-wide LMP is
$10/MWh. With the bid-based cost of $25/MWh, G2’s profit
is (

4.2 · (10− 25) + 0.5 · 0
)
· 0.25 = −$15.75,
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TABLE IX
GENERATION AND FRP IN THE FRP MODEL WITHOUT ENFORCING

TRANSMISSION CONSTRAINT

Scenario Generationa Upward FRPb Downward FRPb

G1 G2 G1 G2 G1 G2

1 140 0 25 0.5 0 0
2 134.5 5.5 15.5 10 0 0

a MW; b MWh/15min

TABLE X
PRICES IN THE FRP MODEL WITHOUT ENFORCING TRANSMISSION

CONSTRAINT

Scenario LMP($/MWh) Price of FRP ($/(MWh/15min))

Bus 1 Bus 2 Bus 3 Upward Downward

1 10 10 10 0 0
2 25 25 25 15 0

which is negative. In contrast, G2 can get positive profit in the
proposed method as shown in (47). It indicates that the ISO
has to make a whole on the bid cost recovery for G2 with the
existing FRP model. The fundamental reason of the revenue
inadequacy is that the ramping constraint for G2 between t=1
and t=2 is binding with a shadow price of $15/(MWh/15min).
It means that LMPs at t=1 and t=2 are still coupled together.
LMP at t=1 is 25-15=$10/(MWh/15min) and LMP at t=2 is
25+15=$40/(MWh/15min) as the unit increment of load at t=1
reduces the ramping between t=1 and t=2 while that at t=2
increases the ramping between t=1 and t=2.

Second, load curtailment may occur in future time intervals.
In this example, load curtailment occurs at t=2 due to the
congestion on Line 1-2 that limits the delivery of the ramping
capability. The fourth row of Table VIII shows that the LMP
at Bus 2 is $500/MWh, which is the penalty price for the
load curtailment at Bus 2 (9.3MW). The cause of the load
curtailment is that the dispatch at t=1 is prescribed without
considering the delivery of the ramping capability, although
the system-wide ramping requirement is satisfied.

These observations demonstrate that the existing FRP model
cannot fully address the issues of ramping deficiency and
uncertainty management. Furthermore, the recovery of bid-
based cost, which is another goal of FRP, may not be achieved
if there is line congestion.

3) Case 3: When transmission flow limits are ignored or
not enforced, the uncertainty and ramping problem is much
simpler. As this model is very simple, we only run the
existing FRP model and the proposed DRRP model once at
the beginning of t=1 and settle the first interval only.

The simulation results for the existing FRP model are shown
in Table IX and Table X. In the base Scenario 1, all the loads
are supplied by G1, which has lower bid cost. The LMPs at
all buses are $10/MWh while the FRP prices are all 0. Thus,
G1 and G2 get zero credits for the non-zero upward FRP they
provide. According to the results in Table XI and Table XII, the
proposed DRRP model has the same solution in this scenario.

In Scenario 2, two changes are considered: Pmax
1 is reduced

from 180MW to 150MW and d2,3 is reduced from 95MW

TABLE XI
GENERATION AND UPWARD RESERVES IN THE DRRP MODEL WITHOUT

ENFORCING TRANSMISSION CONSTRAINT

Scenario Generationa Cap. Reservea Ramp. Reserveb

G1 G2 G1 G2 G1 G2

1 140 0 25 10 25 10
2 134.5 5.5 15.5 74.5 25 10

a MW; b MWh/15min

TABLE XII
PRICES IN THE DRRP MODEL WITHOUT ENFORCING TRANSMISSION

CONSTRAINT

Scenario LMP($/MWh) Cap. Res. Pricea Ramp. Res. Priceb

Bus1 Bus2 Bus3 G1 G2 G1 G2

1 10 10 10 0 0 0 0
2 25 25 25 15 0 0 15

a $/MWh; b $/(MWh/15min)
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Fig. 4. System-wide Net Load

to 85MW. The load supplied by G2 increases to 5.5MW
from 0MW in the existing FRP model according to Table IX.
The upward FRPs are 15.5MWh/15min and 10MWh/15min,
respectively, according to Table IX. The LMP increases to
$25/MWh according to Table X. As the price of upward
FRP increases to $15/(MWh/15min), G1 and G2 can get FRP
credits

15 · 15.5 · 0.25 = $58.125, and 10 · 15 · 0.25 = $37.5,

respectively. It can be observed that the dispatches and LMPs
are the same in the proposed DRRP model according to
Table XI and Table XII. However, G1 gets the capacity reserve
credit

15 · 15.5 · 0.25 = $58.125.

G2 gets the ramping reserve credit

10 · 15 · 0.25 = $37.5.

In this scenario, although the types of credits are different in
the two models, the amounts of total reserve credits are the
same for both generators. It should be emphasized that this is
not a general conclusion, as we also ensure the robustness and
adopt the affine policy in the DRRP.

B. Modified IEEE 118-Bus System

There are 54 traditional units and 186 branches in the
modified IEEE 118-Bus system. The scheduling period is 2
hours, and the time interval is 15 minutes. The loads are
depicted in Fig. 4. The UCs are determined in advance by
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Fig. 5. Total Reserve Credit with Respect to Uncertainty Levels and Fixed
Nominal Wind Power (r2 = 1)

the solution to robust SCUC problem with 5% reserves. Five
wind farms are introduced in the system, and they are located
at buses 11, 49, 60, 78, and 90, respectively. We denote the
set of buses with uncertainty as M. It is assumed that the
forecasted power output (i.e. nominal output) and installed
capacity for each wind farm are 100 MW and 200 MW,
respectively. The uncertainties in this case are from the RES
only. The uncertainty εm,t satisfies|εm,t| ≤ 100 · r1 ·

(
1 + 0.01 · (t− 1)

)
,m ∈M,∀t∣∣∣∑m εm,t

∣∣∣ ≤ 500 · r1 · r2 ·
(

1 + 0.01 · (t− 1)
)
,∀t

where r1 reflects the forecast error confidence interval for a
single wind farm [4], [14], and r2 reflects the forecast error
confidence interval for the aggregated wind output. When
r2 < 1, it indicates that the aggregated forecast error confi-
dence interval is smaller than the sum of five error confidence
intervals. In the experiment, the forecast error increases with
the time intervals. The detailed data including unit parameters,
line reactance and ratings, and net load profiles can be found
at http://motor.ece.iit.edu/Data/118 UMP.xls.

We consider the interval bounds for the uncertainties, and
perform the sensitivity analysis with respect to r1. Fig. 5 shows
the total reserve credits (RC) including ramping reserve credits
and capacity reserve credits that the UMs receive with the
change of r1. When r1 is high, the UMs are also entitled to
high credits. As shown in (32), the reserve credits are the sum
of the products of the amount of valuable reserve and the price
of the valuable reserve. They are analyzed as follows.

Table XIII presents the upward/downward available reserves
and valuable reserves at t=2 with increasing forecast errors,
fixed normal wind power output (100MW each), and fixed
r2. The r1 ∈ [0.1, 0.7], so the error in percentage of the
installed capacity (200MW each) is from 5% to 35%. It is
observed that the available reserves remain the same while
valuable reserve change dramatically with the forecast errors.
As shown in Table XIII, upward available ramping reserve
remains 886.70MWh/15min, and the capacity reserve remains
661.43MW. The main reason is that the unit commitment and
load demand is fixed at t=2 in the system. In contrast, the
upward valuable reserve is 0 when r1 = 0.1. It indicates that
the opportunity cost of keeping the ramping reserve for UM is
zero as it can recover the profit from the energy credit. When
r1 is 0.2, 0.3 and 0.4, the valuable ramping reserve is around
180MWh/15min, and the valuable capacity reserve is around
11MW, 61MW, and 112MW, respectively. UMs are entitled to
credits by keeping the reserves, which is also shown in Fig. 5.

TABLE XIII
RESERVES WITH RESPECT TO INCREASING UNCERTAINTY LEVELS AND

FIXED NOMINAL WIND POWER (r2 = 1, t = 2)

r1
Upward Reserve Downward Reserve

AvaRamp ValRamp AvaCap ValCap AvaRamp ValRamp AvaCap ValCap

0.1 886.79 0 661.43 0 938.46 0 4203.57 0
0.2 886.79 180.79 661.43 10.61 938.46 10.37 4203.57 0
0.3 886.79 180.29 661.43 61.36 938.46 0 4203.57 0
0.4 886.79 179.79 661.43 112.11 938.46 0 4203.57 0
0.5 886.79 479.29 661.43 162.86 938.46 361.61 4203.57 0
0.6 886.79 513.33 661.43 215.49 938.46 337.5 4203.57 4.52
0.7 886.79 684.04 661.43 316.72 938.46 680.33 4203.57 12.14
AvaRamp: Available Ramping Reserve (MWh/15min); ValRamp: Valuable Ramping Reserve (MWh/15min);
AvaCap: Available Capacity Reserve (MW); ValCap: Valuable Capacity Reserve (MW);
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Fig. 6. Upward Ramping Reserve and Price for Unit 42 (r1 = 0.7, r2 = 1)

It suggests that the opportunity cost of keeping the reserve is
non-zero, i.e., UMs can get more profits by deviating from the
dispatch instruction if they are not entitled to reserve credits.
When r1 is further increased to 0.5, the amount of valuable
ramping reserve jumps to 479MWh/15min. It means that more
available reserves become valuable when the uncertainty level
is high. The valuable capacity reserve also increases to 163
MW in this case. A similar tendency can also be observed
for the downward reserves shown in Table XIII. It should
be emphasized that the amount of valuable reserve does not
change monotonically with the uncertainty level. Instead, what
we revealed in this paper is a trend.

The available upward ramping reserve and the price of unit
42 are depicted for different time intervals in Fig. 6 with r1 =
0.7, r2 = 1. As shown in Fig. 6, at t=7, the unit only provides
available reserve but not valuable reserve as its price is zero.
It can be observed that the ramping reserve price reaches its
highest point at t=5, which is also the peak load interval. In
contrast, the ramping reserve price is low at t=6 although the
load demand at t=6 is still relatively high compared to those at
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Fig. 7. Upward Capacity Reserve and Price for Unit 24 (r1 = 0.7, r2 = 1)
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Fig. 8. Reserve Credit (RC) and Expected Operation Cost (EOC) with
Different r2 (r1 = 0.6)

other intervals. It is observed the load climbs from t=4 to t=5,
but falls from t=5 to t=6 as shown in Fig. 4. It indicates that the
ramping reserve price is related to not only the load demand
but also the load change. In this case, the upward ramping
reserve is a scarce resource at t=5, and the opportunity cost
of keeping them is also high. In contrast, the upward ramping
reserve is relatively cheap when the load demand is falling at
t=6, t=7, and t=8.

Fig. 7 depicts the available capacity reserve and the price of
capacity reserve for unit 24 with r1 = 0.7, r2 = 1. Although
the reserve amount unit 24 keeps is the same at each time
interval, the price is different. It is observed that the capacity
reserve price in this case has a similar trend to the system
load level shown in Fig. 4. For example, the capacity reserve
is the most expensive at t=5 when the peak load occurs. The
reason is that the system-wide upward capacity reserve is the
online installed capacity, which is fixed, less the load level.
When the load level is high, the upward capacity reserve is
small which becomes a scarce resource in the system.

Reserve credits with respect to different r2 are presented in
Fig. 8. It shows that the decrease of r2 (from 1 to 0.9 to 0.8)
also leads to lower payments related to reserve. For example,
when r2 decreases from 1 to 0.8, the total RC decreases from
around $2,300 to $1,000. The expected operation cost also
decreases from $194,000 to $192,000. It indicates that the
shrinking uncertainty set actually increases the feasible set for
the robust dispatches.

The numerical results in this part indicate that the reserve
payment proposed in this paper helps improve the market effi-
ciency. When the uncertainty level is high, the payment related
to reserve is also high, It may attract long-term investment
of flexible resources. More flexible resources also mean the
system has more capabilities to handle the uncertainties, and
the system can accommodate higher RES penetrations.

VI. CONCLUSIONS

This paper proposes a new concept DRRP within the AARO
SCED framework. AARO SCED is an effective tool in RTM
to address the uncertainty issue although its solution may only
be near-optimal. DRRP in this paper includes the generation
ramping reserve and the generation capacity reserve. The
prices for DRRP are derived based on the Lagrangian function.
They are the opportunity costs of the uncertainty mitigators
to keep the reserves or flexibilities. With the help of these
prices, the reserves are classified into two categories, which
are available reserves and valuable reserves. The case studies

explain the concept of these reserves and their impacts on the
behaviors of market participants. While the existing FRP may
not be able to recover the energy bid cost for generators due
to line congestions, the proposed reserve pricing mechanism
effectively addresses this issue.

Many research opportunities on this topic are open in the fu-
ture. With increasing RES penetration in the power system, the
flexibilities play a crucial role in uncertainty accommodation.
The prices derived in this paper provide an option to determine
the reserve signals within the robust optimization framework.
Those reserve credits to UMs may attract the investment on
flexible resources in the long term. In return, investment on
new flexible resources allows the system to accommodate
higher RES level. However, we do not consider the cost of
the UC, which may prevent some generators from recovering
their fixed costs. This leads to another important topic, uplift
payment, in the day-ahead market. Convex hull prices and new
models are studied in the literature [33]–[36]. It is interesting
to investigate the cost recovery considering UC and ramping
products in the real-time market.

The most constraints in (16) can be removed based on the
analytical conditions in [37]. It is worth mentioning we can
provide the solution to (P) as an initial point when solving
(MP), which normally leads to better computational perfor-
mance as most modern solvers support warm-start. These
acceleration techniques will be very helpful since it is critical
in real-time markets to get a good enough solution within
limited time.

It should be pointed out that the reserve prices are unit-
specified. It is ideal that all the resources at the same bus have
the same price. An extension of the proposed reserve prices is
to set the maximum ramping and capacity reserve prices for
the units located at a node as the nodal prices. In this way, the
nodal reserve prices are determined by the highest opportunity
costs for the reserves in the node. It should be also noted
that while the robustness against uncertainties is preferred, the
robustness does come with a cost and it is widely known that
the robust optimization approach is conservative. Accordingly,
there should be a trade off between the robustness and the
economic effectiveness. In the proposed model, it is possible
to formulate a data-driven uncertainty set into the polyhedron
in (12) to alleviate the conservativeness. In addition, if a 100%
deliverability is not required, we can reduce the confidence
level of the nodal uncertainties while keeping the same system-
wide confidence level.

It is possible to extend the approach to the day-ahead
market. It is noted that one advantage of the proposed approach
is the ramping constraints are precise, which is exactly needed
in the energy imbalancing market (real-time market). Other
researchers propose a multi-stage model with affine policy
for the day-ahead unit commitment [16]. However, as the
uncertainties are large in day-ahead, if the same ramping
constraints are applied in market clearing, then the solution
will be more conservative.

As day-ahead market is a financial market, we may use the
model with less precise ramping constraints. At the same time,
we have more time to calculate the solution in the day-ahead
market. Therefore, a potential approach is the two-stage robust
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model with full recourse actions [38], where the ramping
reserves and capacity reserves are combined together. In the
day-ahead market, the deliverability of the reserves may lead
to the funding deficiency of Financial Transmission Right. Two
options are possible. One is to allocate these cost to the LSEs,
and the other is to charge the uncertainty source [38].

APPENDIX A
LAGRANGIAN FUNCTION OF PROBLEM (P)

L(Pi, Gi, ρi, ζ, λ, γ, αi, βi, η, τ ) (50)

=
∑
i

(
P>i QiPi +B>i Pi

)
+ λ>

(
Dd−

∑
i

Pi
)

+ Tr[γ>(D −
∑
i

Gi)]

+
∑
i

(
α>i (APi + ρ>i h−Ri) + Tr[β>i (AGi − ρ>i S)]

)
+ η>

(
− F − Γdd+

∑
i

ΓiPi + ζ>h
)

+ Tr[τ>
(∑
i

ΓiGi − Γd − ζ>S
)
]− ξ>ρ− σ>ζ

APPENDIX B
DERIVATION OF PRICES FOR THE FIRST INTERVAL

According to the principle 3) in Section IV and the general
idea of the FRP [23], we rewrite the load as

dm,t = dm,1 +
∑
t

∆dm,t, t = {2, 3, · · · , T},∀m, (51)

and ∆dm,1 = 0,∀m. In FRP [23], a key step to determine the
ramping requirement is to get the load change (i.e. load ramp-
ing) between intervals. In (51), ∆dm,t is the load ramping.

As we only settle the first interval, the dispatches in other
intervals can be rewritten as

Pi,t = Pi,1 +
∑
t

∆Pi,t, t = {2, 3, · · · , T},∀i, (52)

and ∆Pi,1 = 0,∀i. Only Pi,1 will be settled, and the dispatches
in other intervals are auxiliary. ∆Pi,t can be explained as the
reserves. Then, we can reformulate problem (PM) by replacing
dm,t and Pi,t with (51) and (52). The dual solution to the
reformulated problem are the same as that to problem (PM).

Denote λ̃t, α̃c,u
i,t, α̃

c,d
i,t, α̃

r,u
i,t, α̃

r,d
i,t, η̃

u
l,t, and η̃d

l,t as the dual vari-
ables for the load balance constraints, upper and lower bound
constraints, upper and lower ramping constraints, upper and
lower transmission constraints, respectively. The Lagrangian
function of (PM) is

L̃(Pi,1,∆Pi,t,G, ρ, ζ, λ̃, γ̃, α̃, β̃, η̃, τ̃ )

=
∑
i

C(Pi,1) +
∑
t

λ̃t


−
∑
i

(
Pi,1 +

t∑
s=1

∆Pi,s

)
+
∑
m

(
dm,1 +

t∑
s=1

∆dm,s

)


+
∑
i

∑
t

α̃c,u
i,t(Pi,1 +

t∑
s=1

∆Pi,s +Xi,t(ρ
c)− Pmax

i )

+
∑
i

∑
t

α̃c,d
i,t(−Pi,1 −

t∑
s=1

∆Pi,s −Xi,t(ρ
c) + Pmin

i )

+
∑
i

∑
t

α̃r,u
i,t(∆Pi,t +Xi,t(ρ

r)−Rup
i )

−
∑
i

∑
t

α̃r,d
i,t(∆Pi,t +Xi,t(ρ

r) +Rdown
i )

+
∑
l

∑
t

η̃u
l,t

(
fl,t +Xl,t(ζ)− F̄l

)
−
∑
l

∑
t

η̃d
l,t

(
fl,t +Xl,t(ζ) + F̄l

)
+µ̃
(∑

i

∑
t

C(Pi,1 +

t∑
s=1

∆Pi,s)− Z∗(d1)
)

(53)

+Ξ(G, ρ, ζ, λ̃, γ̃, α̃, β̃, η̃, τ̃ ),

where X(·) is the function of dual variables, and Ξ(·) is the
function of adjustment matrices and dual variables. In (53),
the objective function in (17) is also rewritten as a function
of the dispatches at the first interval Pi,1. The optimal value
of problem (P) is denoted as Z∗(d1), which is a function of
the load at the first interval.

Assume that unit i is located at Bus m. We can then
derive the price to settle the first interval. It is defined as the
additional cost at the first interval due to the unit increment
of the load at the first interval with principle 1) in Section IV.
Consider the LMP as an example. It can be derived as

∂L̃
∂dm,1

=
∑
t

(
λ̃t −

∑
l

η̃u
l,tΓl,m +

∑
l

η̃d
l,tΓl,m − µ̃ ·

∂L
∂dm,t

)
,

where µ̃ · ∂L
∂dm,t

is from constraint (53). ∂L
∂dm,t

is actually the
LMP derived from (P). The ramping and capacity reserve
prices can also be derived similarly.

To have a unified form, we define the intermediate prices

π̃e
i,t , [π̃e

i,1, π̃
e
i,2, · · · , π̃e

i,T ]>

π̃r,ru
i,t , [π̃r,ru

i,1 , π̃
r,ru
i,2 , · · · , π̃

r,ru
i,T ]>

π̃r,rd
i,t , [π̃r,rd

i,1 , π̃
r,rd
i,2 , · · · , π̃

r,rd
i,T ]>

π̃r,cu
i,t , [π̃r,cu

i,1 , π̃
r,cu
i,2 , · · · , π̃

r,cu
i,T ]>

π̃r,cd
i,t , [π̃r,cd

i,1 , π̃
r,cd
i,2 , · · · , π̃

r,cd
i,T ]>

where
π̃e
i,t , λ̃t −

∑
l η̃

u
l,tΓl,m +

∑
l η̃

d
l,tΓl,m, ∀t

π̃r,ru
i,t , α̃r,u

i,t, π̃r,rd
i,t , α̃r,d

i,t, ∀t
π̃r,cu
i,t , α̃c,u

i,t, π̃r,cd
i,t , α̃c,d

i,t, ∀t

Based on the intermediate prices, the prices calculated from
(P), and the Lagrangian function, the prices in (42)-(46) can
be derived based on the sensitivity analysis theory.

It should be emphasized that it is enough to compensate
the opportunity costs of generators by crediting the capacity
reserves only. In order to be consistent with the existing FRP,
generators are also entitled to the ramping reserve credits.
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