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Abstract—With increasing renewable energy resources, price-
sensitive loads, and electric-vehicle charging stations in the power
grid, uncertainties on both power generation and consumption
sides become critical factors in the Security-Constrained Unit
Commitment (SCUC) problem. Recently, worst scenario robust
optimization approaches are employed to consider uncertainties.
This paper proposes a non-conservative robust SCUC model and
an effective solution approach. The contributions of this paper are
three-fold. First, the commitment and dispatch solution obtained
in this paper can be directly used in day-ahead market as it
overcomes two issues, conservativeness and absence of robust
dispatch, which are the two largest obstacles to applying robust
SCUC in real markets. Secondly, a new concept recourse cost
requirement, similar to reserve requirement, is proposed to define
the upper bound of re-dispatch cost when uncertainties are
revealed. Thirdly, a novel decomposition approach is proposed
to effectively address the well-known computational challenge
in robust approaches. Simulation results on the IEEE 118-bus
system validate the effectiveness of the proposed novel model
and solution approach.

Index Terms—Robust SCUC, Recourse Cost, Robust Optimiza-
tion, Uncertainty, Redispatch

I. INTRODUCTION

IN modern electricity markets, the commitment and dispatch
of generating units are determined by solving the Security-

Constrained Unit Commitment (SCUC) problem. In the U.S.,
the Independent System Operators (ISOs) and Regional Trans-
mission Organizations (RTOs) run the SCUC software tool
with the bid/offer data from market participants and the fore-
tasted load information in day-ahead market (DAM) and real-
time market (RTM). SCUC is a problem to find the optimal
unit commitment (UC) and generation output that satisfy sys-
tem constraints, such as generation load balance constraints,
reserve requirements, and transmission capacity limits, as
well as unit-wise constraints, such as maximum/minimum
capacities, minimum on/off time requirements, and ramping
up/down rate limits [1]–[4]. An assumption in conventional
SCUC is that loads in the grid are known to RTOs/ISOs when
SCUC is performed. However, the assumption can hardly
be true in real life, especially in recent years as renewable
energy sources (RES), such as wind power generation, and
price-sensitive demand response result in more variations and
uncertainties in power systems than ever before. Large-scale
deployment of electric-vehicle charging stations also brings
more uncertainties into power systems.
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If controllable generators and adjustable loads fail to follow
the system condition changes, RTOs/ISOs may have to curtail
the load in order to balance the system. Failure to survive
from uncertainties may also jeopardize system security. In the
market level, ISOs/RTOs have two chances to increase the
system robustness against uncertainties from generations and
loads: the SCUC solution for DAM and the SCUC solution
for RTM. Considering these uncertainties and obtaining a
solution that immunes the uncertainties become new and
critical challenges in solving SCUC problem.

Recently, two popular approaches are applied to address the
uncertainty issues. One is scenario based stochastic optimiza-
tion [5]–[7], and the other is two-stage robust optimization
[8]–[11]. The main idea of stochastic approach is to optimize
the SCUC problem considering a set of scenarios, which are
generated based on Probability Distribution Function (PDF)
for uncertainties. This approach is effective when PDF is
available, which, however, is not always true in practice.
Another issue of this approach is that it does not guarantee
the feasibility for all the uncertainties, as only limited sample
points are considered. The key idea of the two-stage robust
optimization is to determine the optimal UC in the first stage
which leads to the least operation cost for the worst-case
scenario in the second stage [8]–[10]. The solution obtained
using this approach can be immunized against all possibilities
of uncertainties. However, this approach is conservative be-
cause the worst-case scenario, which generally has a very low
probability, is optimized. In addition, a robust dispatch that can
be used by ISOs/RTOs is not specified. In order to address the
conservativeness issue, authors in [12] combine the stochastic
and robust approaches using a weight factor in the objective
function at the cost of possible larger computation burden.
To get robust dispatch solution, Affine Policy (AP) has been
applied to adjust the generation levels from base dispatch in
Security-Constrained Economic Dispatch (SCED) model [13],
[14]. The main reason of introducing AP in robust literatures
is that it convexifies the problem and makes the problem
computational tractable [15]. The price of the convexification
is that it shrinks the feasible set due to the strong assumption
and the re-dispatch operation according to AP is non-optimal.
With the strict recourse action, the multi-stage robust SCUC
approaches are proposed in [16], [17]. On the other hand, the
rolling optimization and Model Predictive Control (MPC) are
also reported for look-ahead dispatches [13], [16], [18], [19].

In this paper, a novel robust SCUC model is proposed,
which bridges the gap between robust UC and robust SCED.
We optimize the operation cost for the base-case scenario
only while guaranteeing the feasibility against all scenarios
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including the worst-case scenario. Both the UC and dispatch
solutions are robust against the uncertainties. In order to
limit the cost of the worst-case scenario, the Recourse Cost
(RC) is proposed in this paper. RC is the re-dispatch cost
for accommodating deviations from the base-case scenario.
Compared to the strict AP based recourse actions in [13],
[14], [16], [17], the full recourse actions are considered in the
proposed model. The deliverability of ramping capabilities is
also another focus on this paper in uncertainty accommodation.
This paper is an extension of authors’ previous work [20] with
a new solution approach and more simulation results. The main
contributions are listed as follows.

1) Both UC and SCED solutions are robust in the model.
The upward and downward ramping capabilities are re-
served at each time interval. It provides the possibility of
pricing the energy and generation reserves in electricity
markets within the robust framework.

2) To overcome the conservativeness issue, the base-case
scenario is optimized instead of the worst-case scenario.
A new concept RC requirement, similar to reserve
requirement, is proposed to limit the re-dispatch cost
when uncertainties are revealed.

3) Extreme point based approach is used to solve the
new robust SCUC problem. By exploring the special
structure of the proposed model, novel decomposition
techniques are proposed in this paper to address the
issues of computational tractability. By decomposing the
original time-coupled problem into time-decoupled sub-
problems, the solution time improves in a nonlinear fash-
ion without loss of solution quality. It is also possible to
employ parallel techniques to further reduce the solution
time as the sub-problems are naturally independent.
However, it is worth mentioning that the acceleration
is model dependent.

The rest of this paper is organized as follows. Section
II presents the problem formulation. The overall solution
approach is presented in Section III, and the decomposition
approach is presented in Section IV. In Section V, a compre-
hensive case study for the IEEE 118-bus system is conducted.
We conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. Uncertainty Modeling

Uncertainties in power systems could come from unforeseen
load demand and volatile generation output, which can be
treated as negative loads. These uncertainties can be formu-
lated as

U := {(ε1, · · · , εT ) ∈ RNd × · · · × RNd :

¯
ut ≤ εt ≤ ūt,∀t (1)

Lt ≤
∑
m

εm,t ≤ Ut,∀t}, (2)

where Nd and T are the numbers of uncertain load injections
and scheduling periods respectively, and εt represents the
uncertainty vector at time t. εm,t is the entry in the vector εt.
Define ε = [ε>1 , · · · , ε>T ]>. U is a compact and polyhedral
set (i.e., polytope). Equation (1) implies that the uncertainties

are limited in intervals. The summation of these uncertainties
are restricted by lower and upper bounds at time t, as shown in
(2). The uncertainty set is similar to the one used in [9], and the
difference is that only spatial constraint is considered in this
paper. The uncertainty set can also be replaced with the one
used in [8], and the techniques introduced in this paper are still
applicable. Related formulation is presented in Appendix B.

B. Robust SCUC Model for Worst-case Scenario

The robust SCUC in literatures is to find the optimal UC
solution that leads to the least operation cost in the worst-case
scenario [8], [9]. The basic idea is consistent with [15]. For
convenience, the formulation is written here as

(P1) min
x∈B

(
c>b x+ max

ε∈U
min

p∈Q(x,ε)
c>g p

)
, (3)

where x refers to the binary decisions including startup and
shutdown actions and on/off indicators, and p represents the
generation level vectors for units. B denotes the feasible
set for binary variables which satisfies the constraints of
startup/shutdown actions, minimum on/off time requirements
for generators and so on. Q(x, ε) is the feasible set for
dispatch given the UC x and uncertainty ε, which is basically
a feasible set of Security-Constrained Economic Dispatch
(SCED) problem. c>b x and c>g p refer to the costs associated
with unit statuses and generation dispatches, respectively.

C. Robust SCUC Model with Recourse Cost Requirement

ISOs/RTOs desire to get the optimal UC and dispatch
solution in the base-case scenario. They can re-dispatch the
flexible resources, such as adjustable load demands, storages
and generators with fast ramping capabilities, to follow the
load when deviation occurs (or uncertainty is revealed). RC
is basically the cost of re-dispatch with the realization of
uncertainties. Let x represent all the binary variables. p and
p̂ denote the base dispatch and the adjusted dispatch with
uncertainties, respectively. It is noted that all the flexible
resources are modeled as generators. The new robust SCUC
model is written in abstract form as

(P2) ψ := min
(x,p)∈F(cr)

c>b x+ c>g p (4)

s.t. Ax+Bp ≤ b (5)
x is binary vector ,

and

F(cr) :=
{

(x, p) : ∀ε ∈ U ,∃p̂ such that

Cx+Dp̂+ Eε ≤ g (6)
Fp+Gp̂ ≤ ∆ (7)

c>g (p̂− p) ≤ cr
}
. (8)

The main idea of the above model is to find the least cost UC
and dispatch for the base-case scenario over the feasible set
F(cr). UC vector x and dispatch vector p in F(cr) can be im-
munized against all possible uncertainties. A,B,C,D,E, F
and G are abstract matrices for representing constraints. The
RC for (x, p) is not greater than the RC requirement cr (8).
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Objective function (4) is to minimize the total operation cost
for the base-case scenario, and the optimal value is denoted
by ψ. Equation (5) includes all unit commitment and network
constraints for the base-case scenario, the details of which
can be found in [3], [4], [21]. F(cr) is defined in (6-8). With
the realization of uncertainties, units adjust dispatch from p
to p̂ while respecting all the constraints (6). The redispatch
from p to p̂ is limited by the ramping constraints (7) and RC
requirement (8). Equation (7) is the abstract form for

P̂i,t − Pi,t ≤ ∆TRui (1− yi,t),∀i, t (9)

−(P̂i,t − Pi,t) ≤ ∆TRdi (1− zi,t+1),∀i, t (10)

where P̂i,t and Pi,t are entries in the vector p̂ and p,
respectively. Rui and Rdi are the ramping up and down rates,
respectively. yi,t and zi,t are the start-up and shut-down indi-
cators, respectively. ∆T is the response time for uncertainties.
In fact, F(cr) defines the reserved ramping capabilities of
the system to handle uncertainties, which is similar to the
reserve in the literatures [22]. A significant difference is that
the deliverability of the reserve is considered in problem (P2),
which also guarantees the robustness.

It should be noted that ramping constraints are modeled
for Pi,t → P̂i,t, Pi,t+1 → P̂i,t+1, and Pi,t → Pi,t+1, but
not for P̂i,t → P̂i,t+1. That is because solutions are hourly-
based in DAM, and uncertainties normally can be revealed
several hours ahead in RTM or Intro-day Market (IDM). It is
reasonable to assume units have enough time to re-dispatch
P̂i,t → P̂i,t+1 via P̂i,t → Pi,t → Pi,t+1 → P̂i,t+1 in extreme
case. In the industry, this assumption is adopted during the re-
dispatch process for contingency analysis. Similar assumption
is also used in the scenario-based stochastic SCUC [7]. In this
way, we can focus on a less conservative base-case solution
that has lower cost.

Robust dispatch, which is absent in literatures [8], [9],
is obtained from (P2) with robust UC simultaneously. It is
important to get a robust dispatch in DAM. First, the Lo-
cational Marginal Price (LMP), used by most U.S. electricity
markets, is a by-product of the SCED solution. Second, market
participants need to prepare the awarded dispatches for the
second day, and sometimes they may co-optimize them with
other resources, such as natural gas.

The limit on RC is set in advance by ISOs/RTOs. Two
possible strategies of defining RC by ISOs/RTOs are 1) Ab-
solute RC (ARC): An absolute value; 2) Relative RC (RRC):
A relative value as a percentage of the base-case cost. The
RC requirement is similar to the spinning reserve requirement
in the existing markets. RC is defined in terms of cost while
spinning reserve is defined in terms of power. Therefore, the
reserve requirement can be treated as one of the guidelines
to choose RC. On the other hand, RC can also be selected
proportional to the amount of the uncertainty. It is noted that
the ISOs/RTOs may choose multiple RC values as candidates
and calculate the optimal solutions in parallel. The total cost
for base-case scenario is a monotonically decreasing function
with respect to RC. A typical curve is depicted in Fig. 1. If
RC is large enough, the base-case operation cost can reach its
minimal value. On the contrary, if RC is too small, the base-
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Fig. 1. Operation cost v.s. RC

case UC and dispatch would correspond to high operation cost,
or even be infeasible. RC reflects the decision maker’s degree
of conservativeness to the uncertainties.

D. Model Comparison

It can be observed that both (P1) and (P2) are two-stage
adaptive problems. The first stage in (P1) is to find UC, and
the second stage is to find the worst-case scenario. In (P2),
the first stage is to find UC and dispatch for the base-case
scenario, the second stages are to find the re-dispatches when
the uncertainties are revealed. The adaptive problem for (P2)
can be defined as

min
p̂

c>g p̂

s.t. Dp̂ ≤ g − Cx− Eε

Gp̂ ≤ ∆ − Fp

when ε or partial ε is revealed. There are two main differences.

1) Conservativeness. (P1) is conservative due to the max-
min part in the objective function. It tries to minimize
the worst-case cost. On the contrary, (P2) is to minimize
base-case cost. Hence, solution of (P2) avoids the con-
servativeness issue of (P1). RC in (P2) also limits the
redispatch cost for the worst-case scenario.

2) Application in practice. UC is the only usable informa-
tion of (P1). A critical question regarding (P1) is how
to obtain the dispatch solution which will be settled in
the DAM and how to make sure that dispatch immunes
against uncertainties. Even if the SCED problem is
performed separately, the separation may lead to non-
optimal dispatch and cause troubles for pricing energy.
(P2) provides the UC and SCED solution in one shot,
and the determination of energy price is possible.

In the unified approach [12], weight factor is employed to
refine the conservativeness of the robust solution. In a special
case where the weight factor is zero for the robust part, the
robust UC with the least cost for the base case can be obtained.
However, no deliverable ramping capability is specified for
the ED solution obtained in this case. In comparison to this
special case, a major difference is that the ED solution to (P2)
is robust. In addition, the ramping capability to accommodate
the uncertainties is reserved and deliverable based on the ED
solution to (P2). It is also possible to calculate the reserve
price within the robust model.



4

Algorithm 1 CG-based Procedure to Solve (P2)
1: W ← ∅, z ← +∞, define feasibility tolerance φ
2: while z ≥ φ do
3: Solve (MP), obtain optimal (x∗, p∗).
4: Solve (SP) with x = x∗, p = p∗, get solution (z, ε∗)
5: W ←W ∪ ε∗
6: end while

III. SOLUTION APPROACH

The challenge of any robust approach is to ensure the
feasibility for infinite number of constraints due to uncertain-
ties. In comparison, traditional SCUC considers finite number
of constraints. Benders Decomposition (BD) and Column
Generation (CG) methods can be employed to solve (P2)
exactly. Only feasibility cuts are generated in the BD method,
while the point with the largest violation in the subproblem is
of concern in the CG method.

The CG method in [11], which normally has better compu-
tational performance, is used to solve the model in this paper.
The master problem and subproblem for the proposed model
are defined as

(MP) min
x,p

c>b x+ c>g p (11)

s.t. Ax+Bp ≤ b (12)
Cx+Dpk+Eεk ≤ g,∀k ∈ K (13)
Fp+Gpk ≤ ∆,∀k ∈ K (14)
c>g (pk−p) ≤ cr,∀k ∈ K (15)
x is binary vector ,

and

(SP) z := max
ε∈U

min
(s1,s2,p̂)∈P(ε)

1>s1 + 1>s2 (16)

where

P(ε) :=
{

(s1, s2, p̂) :

Cx+Dp̂+ E(ε+ s1 − s2) ≤ g (17)
Fp+Gp̂ ≤ ∆ (18)
c>g (p̂− p) ≤ cr (19)

s1, s2 ≥ 0
}
. (20)

K is the index set for uncertainty points ε which are dynam-
ically generated in (SP) with iterations. Let W denote the
set of these uncertainty points, then εk ∈ W . Variable pk

is associated with εk. The objective function in (SP) is the
summation of non-negative slack variables s1 and s2, which
evaluates the violation associated with the solution (x, p) from
(MP). s1 and s2 are also explained as un-accommodated
uncertainties (generation or load shedding) due to system
limitations. The CG based procedure is presented in Algorithm
1. It is observed that the CG method is similar to the scenario-
based method [7]. The main difference is that the sample point
εk is generated dynamically for the scenario with the largest
violation.

Problem (MP) is a typical SCUC problem considering dif-
ferent scenarios for uncertainties. Compared with the stochas-
tic SCUC, the number of scenarios in (MP) is limited; hence,
the computational burden of (MP) is much smaller. On the
contrary, problem (SP) is hard to solve, especially when the
uncertainty set U is a general polyhedron. Problem (SP) is
hard to solve since infinite uncertainty points and infinite
re-dispatch strategies are considered. It is non-convex and
known as computationally intractable. In [8], [9], [12], authors
employed heuristic methods, such as Mountain Climbing and
Outer Approximation, to solve the non-convex max-min prob-
lem. However, these methods get locally optimal value only,
and have the risk of losing robustness, which is the largest
merit of robust SCUC compared with stochastic SCUC. In this
paper, robustness is the first priority and uncertainties must be
followed in any scenario. Hence, an exact solution approach
based on extreme points are used to solve (SP). However, it is
computationally intractable for large systems. In Section IV,
a novel decomposition approach is proposed to address this
issue.

As shown in [15], [23], the optimal value to this type of
max-min problem is always achieved at the extreme points of
polytope U . In this paper, another interesting explanation is
presented according to the following theorem.

Theorem 1. Let f(ε) := mins1,s2,p̂∈P(ε) 1>s1 + 1>s2.
f(ε), which is the minimum un-accommodated uncertainty in
(SP) given ε, is a convex function of ε.

The proof is presented in Appendix A. Problem (SP) can be
rewritten as maxε∈U f(ε). Since f(ε) is convex according to
Theorem 1, its maximal value over the compact and polyhedral
set U can always be obtained at the extreme points of U .

According to the strong duality of Linear Programming
(LP) problem, the inner minimization problem in (SP) can
be converted into a maximization problem. Therefore, the
max-min problem (SP) is equivalent to the following disjoint
bilinear programming problem

(SP-BI) max
ε,λ,µ,γ

−λ>g̃ − λ>Eε− µ>∆̃− γc̃r (21)

s.t. ε ∈ U
D>λ+G>µ+γcg = 0 (22)
−1 ≤ E>λ ≤ 1 (23)
λ, µ ≥ 0, γ ≥ 0, (24)

where g̃ := g − Cx, ∆̃ := ∆ − Fp and c̃r := cr + c>g p
are constants, as x and p are solutions to (MP). λ, µ, and γ
are Lagrangian multipliers for (17-19),

As stated previously, the optimal ε to (SP-BI) are the
extreme points of U . Hence, candidates of optimal ε can
be written as a function of the extreme points directly by
introducing auxiliary binary variables when closed form of
extreme points are available. In this way, the original infinite
set of continuous variable ε is reduced to finite extreme points
of U . Consider an example as follows. Candidates of optimal
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ε can be written as
ε =

∑
n

ynε
e
n, (25)∑

n

yn = 1, yn ∈ {0, 1},∀n, (26)

where εen is the nth extreme point for U , and it is a constant
vector. yn is the indicator of εen being selected as optimal ε.
It is noted that (25-26) is just an example and the general
formulation for typical budget sets is shown in Appendix B.

The only quadratic term λ>Eε in (SP-BI) is linearized as
follows. Let β := λ>E, which has the same dimension as ε.
Then, we have

λ>Eε =
∑
m

βmεm =
∑
m

∑
n

βmyn(εen)m, (27)

where subscript m denotes the mth entry in vector. Let wmn :=
βmyn, then

wmn =

{
βm, if yn = 1 (28)
0, if yn = 0. (29)

Since −1 ≤ βm ≤ 1 according to (23), −1 ≤ wmn ≤ 1 holds.
Therefore, the linear form of the above equations is{

wmn ≥ βm + yn − 1, wmn ≥ −yn (30)
wmn ≤ βm + 1− yn, wmn ≤ yn. (31)

A merit of (30-31) is that the coefficients for binary variables
yn are 1 or -1 instead of big-M in literatures. This is important
in terms of computational tractability. With the exact lineariza-
tion, problem (SP-BI) is converted into an MILP problem

(SP-E) max
λ,µ,β,γ,wmn

−λ>g̃ −
∑
m

∑
n

wmn(εen)m − µ>∆̃− γc̃r

s.t. (22− 24), (26), (30− 31)

β = λ>E (32)

It is noted that, depending on the sign of (εen)m, only one of
(30-31) is necessary and the other is redundant for wmn.

IV. RELAX-AND-ENFORCE DECOMPOSITION APPROACH

CG based framework is employed to solve the robust SCUC
problem in this paper as shown in Algorithm 1. In Section III,
a linearized model (SP-E) to solve problem (SP) exactly is
presented, but it is computationally intractable. As shown in
Section II-A, uncertainty ε is time decoupled. So, even if there
are only 10 different extreme εt at time t, then 1024 extreme
points should be considered in (SP-E) for 24-hour scheduling
problem. The computational burden is extremely large for the
modern MILP solvers.

In this section, novel decomposition techniques are pro-
posed to accelerate the solution process. The decomposition
approach is employed to solve the problem (SP) efficiently
within the CG-based framework. The basic idea is to de-
compose the original time-coupled problem (SP) into smaller
time-decoupled subproblems for individual time intervals, and
then solve them separately. In comparison to other models [8],
[10], another merit of the proposed model is that it has special
structure in (SP). s1, s2, and p̂ in (SP) are time-coupled due
to the RC requirement constraint (19). Fortunately, this is also

the only constraint coupling the variables in time dimension.
It is popular to employ Lagrangian Relaxation to decouple
variables in SCUC literatures [1], [4]. However, it cannot be
used to relax (19), due to the large gap between the original
and the relaxed problem. In this paper, we address the time
coupling issue exactly by introducing a RC searching problem.

First, we formulate a new problem (SP-1) as follows.

(SP-1) z1 := max
ε∈U

min
(s1,s2,p̂)∈P1(ε)

1>s1 + 1>s2

where

P1(ε) :=
{

(s1, s2, p̂) :

Cx+Dp̂+ E(ε+ s1 − s2) ≤ g

Fp+Gp̂ ≤ ∆,

s1, s2 ≥ 0.
}
.

Compared with P(ε) in problem (SP), RC constraint (19) is
relaxed in set P1(ε). Given base-case UC x and dispatch
p, the optimal value z1 to (SP-1) is the un-accommodated
uncertainty. It is an underestimation as RC requirement is
ignored.

Second, another new problem is formulated as

(SP-2) z2 := max
ε∈U

min
p̂∈P2(ε)

c>g (p̂− p)− cr

where

P2(ε) :=
{
p̂ : Cx+Dp̂+ Eε ≤ g, Fp+Gp̂ ≤ ∆

}
.

It is observed that no slack variable is used in (SP-2). The
objective is to find the ε leading to the largest violation of
RC requirement. Given the solution (x, p) to problem (MP),
we can solve the problem (SP-1) and (SP-2) sequentially. And
we have the following proposition regarding the solutions to
(SP-1) and (SP-2).

Proposition 1. Given base-case UC x and dispatch p, if the
optimal value to problem (SP-1) is zero, then problem (SP-2)
is feasible, and the RC requirement violation is z2. If z2 ≤ 0,
then (x, p) is feasible to (P2).

It can be observed that variables in both problem (SP-
1) and (SP-2) are time-decoupled. Therefore they can be
decomposed into subproblems for individual time intervals.
We add subscript t to denote the variables and parameters
for the subproblems at time t in the following context. For
example, x is denoted as [x>1 · · ·x>t · · ·x>T ]>. Subproblems
of (SP-1) and (SP-2) at time t can be formulated as

(SP-1-t) z1,t := max
εt∈Ut

min
(s1,t,s2,t,p̂t)∈P1,t(εt)

1>s1,t + 1>s2,t

where

P1,t(εt) :=
{

(s1,t, s2,t, p̂t) :

Ctxt +Dtp̂t + Et(εt + s1,t − s2,t) ≤ gt

Ftpt +Gtp̂t ≤ ∆t,

s1,t, s2,t ≥ 0
}
,

and

(SP-2-t) z2,t := max
εt∈Ut

min
p̂t∈P2,t(εt)

c>t p̂t
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Algorithm 2 Decomposition Procedure to Solve (P2)
1: W ← ∅, z1 ← +∞, z2 ← +∞, define tolerance φ
2: while z1 ≥ φ or z2 ≥ φ do
3: Solve (MP), obtain optimal (x∗, p∗).
4: z1 ← 0
5: for t = 1 to T do
6: Solve (SP-1-t) with xt = x∗t , pt = p∗t , obtain opti-

mal (z1,t, ε
∗
t )

7: z1 ← z1 + z1,t

8: end for
9: if z1 < φ then

10: z2 ← 0
11: for t = 1 to T do
12: Solve (SP-2-t) with xt = x∗t , pt = p∗t , obtain op-

timal (z2,t, ε
∗
t )

13: z2 ← z2 + z2,t

14: end for
15: z2 ← z2 − cr − c>g p∗
16: end if
17: ε∗ ← [ε∗

>

1 , · · · , ε∗>T ]>

18: W ←W ∪ ε∗
19: end while

where

P2,t(εt) :=
{
p̂t : Ctxt +Dtp̂t + Etεt ≤ gt

Ftpt +Gtp̂t ≤ ∆t

}
.

The approach to solve (SP) presented in Section III is still
applicable to subproblems (SP-1-t) and (SP-2-t). The time-
decoupled procedure to solve problem (P2) is presented in
Algorithm 2.

Proposition 2. The optimal value to (MP) in Algorithm 2 is
always a lower bound of the optimal value to problem (P2).

Theorem 2. Given compact and polyhedral set U defined
in (1-2), the procedure in Algorithm 2 converges in finite
steps, and the optimal (x∗, p∗) to (P2) is obtained when the
procedure converges.

See Appendix C for the proof. According to the simulation
experiences, the procedure normally converges after several
iterations. By employing Algorithm 2, the combinatorial ex-
plosion issue is effectively addressed. Considering the example
at the beginning of this section, instead of 1024 extreme points,
only 10 extreme points are modeled in (SP-1-t) or (SP-2-t) at
each time interval, and the optimal value to (SP-1) or (SP-
2) can be obtained by solving 24 similar subproblems. The
original feasibility check problem (SP) is decomposed into
two steps, where the first step is to check the generation or
load shedding by relaxing the resource cost constraint and the
second step is to check the recourse cost violation until the
recourse constraint is enforced. We call the proposed approach
relax-and-enforce decomposition approach. It should be noted
that the acceleration techniques are model dependent. They
are not applicable to the models in [8], [10].

Remark 1. Parallel computing can be employed to solve

TABLE I
BASE COST SENSITIVITY ANALYSIS WITH RC REQ.*

cr(k$) Iter. Base Cost ($) Worst Cost ($) UCs(h)

102 5 1,934,367 2,036,367 771
112 5 1,924,318 2,036,318 772
122 5 1,914,426 2,036,426 770
132 5 1,904,893 2,036,893 772
142 5 1,895,525 2,037,525 767
152 5 1,886,402 2,038,402 763
162 5 1,877,659 2,039,659 762
172 5 1,869,490 2,041,490 751
182 5 1,862,697 2,044,697 746
192 3 1,859,925 2,050,249 738
202 3 1,859,925 2,050,249 738

* α = 30%, β = 0.85

the problem (SP-1-t) and (SP-2-t) simultaneously for all time
intervals. These problems are naturally independent with each
other, hence the total solution time can be reduced consider-
ably by parallel computing.

Remark 2. According to the Proposition 1, the tightest upper
bound of the RC for the optimal (x, p) to (P2) can be obtained
as a byproduct, which can be used to help the decision marker
determine a proper value of RC requirement.

V. CASE STUDY

Numerical testing is performed on the modified IEEE 118-
bus system with 54 thermal units and 186 branches. The new
robust SCUC problem is solved using procedures proposed in
this paper. MILP problems are solved by Gurobi 5.6.3 [24] on
PC with Intel i7-3770@3.40GHz 8GB RAM. In Section V-A,
the operation costs for base-case scenario are reported for
different levels of RC. Comparisons between RC requirement
and reserve requirement are presented in Section V-C. Finally,
we report computational benchmark testing results for different
approaches in Section V-D.

The peak load is 6600MW in 24 hours for the modified
IEEE 118-bus system. The detailed data including generator
parameters, line reactance and ratings, and load profiles can be
found at http://motor.ece.iit.edu/Data/ROSCUC 118.xls. The
uncertainty εt at time t respects −αtdt ≤ εt ≤ αtdt, and
Lt ≤ 1>εt ≤ Ut, where dt denotes the foretasted load vector
at time t for the buses with uncertainties, Lt = −βtαt1>dt,
and Ut = βtαt1

>dt. Parameters αt ∈ R and βt ∈ [0, 1]
represent degrees of uncertainty at bus levels and system level,
respectively.

A. Operation Cost v.s. RC Requirement

It is assumed that load uncertainties are located in 10 buses
out of the 91 load buses, where the loads are greater than
1.95% of the system load. The αt is set to 30%, and the βt
is set to 0.85 for all time periods. The RC levels are adjusted
for the sensitivity analysis. We set the feasibility tolerance
φ = 0.001 and use the default settings in Gurobi.

Table I presents simulation results with increasing levels of
RC requirement cr. The second column shows the iteration
number of the approach. The third and fourth columns list the
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operation costs in base-case and worst-case respectively. The
worst-case cost is obtained by adding the tightest upper bound
of RC to base-case cost. Total unit commitment hours, which
are the summations of committed unit-hours, are presented in
the last column. It can also be used to distinguish different
UC solutions for diverse cr. It should be noted that both
the dispatches and UCs in this paper are robust against the
uncertainties which are different from the robust UCs only
in literatures [8], [9], [12], where the SCED problem is
performed with full 24-hour load information once the robust
UC solution is obtained. In our experiment, the robust dispatch
is determined without exact load information. It is observed
that, the base-case cost decreases with the increment of the
RC requirement. This is consistent with the curve depicted
in Fig. 1. The lower bound of the base-case cost is achieved
when cr ≥ $192, 000 and the tightest upper bound of RC is
$190, 324, which is a byproduct of Algorithm 2.

The data in Table I also demonstrates that if the worst-
case cost is employed as the objective function, then it
leads to conservative UC and dispatch solutions for the base
case. Lower worst-case cost normally causes higher base-case
cost. In Table I, the lowest worst-case cost $2, 036, 318 is
obtained when cr = $112k with the 2nd largest base-case cost
$1, 924, 318. On the contrary, when cr = $172k, base-case
cost is decreased by 2.85% ($54,828) while the worst-case cost
is increased by only 0.25% ($5,172). In this example, $172k
is consider as a better RC requirement than $112k, since we
can save much more money in the base-case by paying a
little more if the rare worst-case occurs. The changes of base-
case and worst case costs are nonlinear with the increment
of cr. For example, the base-case cost increases by 0.365%
when changing cr from $182k to $172k. The base-case cost
increases by 0.484% when replacing cr $152k with $142k. It
is observed that it becomes expensive to lower the cr if it is
already small.

In general, the robustness can always be guaranteed as
long as the system has large enough ramping capability. The
ramping capability is provided by the online units in our
experiment. However, it is economically inefficient to have too
many unnecessary units online. As shown in the last column of
Table I, extra generators are committed with the lowest worst-
case cost if cr is too low. This is the issue of robust SCUC
model in the existing literatures. Using the model proposed

TABLE II
AVERAGE COST FOR BASE-CASE AND WORST-CASE ORIENTED

MODELS (β = 0.8)

α Base-Case Oriented ($) Worst-Case Oriented($) Difference ($)

5 1,763,458.39 1,768,389.05 4,930.67
4 1,760,138.73 1,764,623.7 4,484.97
3 1,757,905.63 1,760,625.46 2,719.83
2 1,756,610.09 1,758,117.48 1,507.39

TABLE III
AVERAGE COST FOR BASE-CASE AND WORST-CASE ORIENTED

MODELS (α = 3)

β Base-Case Oriented ($) Worst-Case Oriented($) Difference ($)

0.9 1,758,593.52 1,762,390.13 3,796.61
0.8 1,757,905.63 1,760,625.46 2,719.83
0.7 1,757,323.87 1,758,907.76 1,583.89
0.6 1,756,969.04 1,757,966.32 997.28

in this paper, much less conservative options in Table I are
available to the decision maker.

The average operation costs for different choices of RCs are
shown in Fig. 2. Both normal distribution and uniform distri-
bution are tested. They are calculated from 1000 randomly
generated load points, given the base-case UC and dispatch
solutions. Fig. 2 shows that the average cost is dependent on
the PDF of uncertainty and nonlinear with respect to cr. In this
example, the lowest cost is obtained at cr = $132k, although
variations of average cost are small. An observation is that
the average cost obtained with normal distributed uncertainty
is lower than that with uniform distributed uncertainty.

B. Base-Case V.S. Worst-Case Oriented Model

In the existing robust UC literatures, the worst-case scenario
is optimized. Both the robust UC and robust ED solution can
be obtained in a shot in the model proposed in this paper. As
the robust ED is absent in existing robust SCUC models [8]–
[10], [12], it would be unfair to compare them directly. There-
fore, we perform the simulations using the model proposed in
this paper but with different objective functions. In the base-
case oriented model, we formulate the base-case cost as the
objective function. In the worst-case oriented model, the worst-
case cost is formulated as the objective function. Both robust
UC and robust ED can be obtained in the simulations. Hence,
we can compare the conservativeness of the base-case and
worst-case oriented models. In this subsection, uncertainties
are assumed located at buses 17, 19, 40, 60, and 90. As the
number of buses with uncertainty is decreased, we increase
the uncertainty amount at each bus (i.e. α). For simplicity, the
recourse cost requirement is dropped (i.e., cr = +∞). The
experiments are performed as follows: 1) solve the base-case
oriented and worst-case oriented robust SCUC problem with
different uncertainty parameters α and β, then obtain two sets
of base solution; 2) randomly generate 500 samples assuming
normal distribution for uncertainties, and calculate the average
cost.
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TABLE IV
AVERAGE COST AND FEASIBILITY COMPARISON α = 0.85

Average Cost ($) Infeasibility (%) Base Cost ($)
β Rob. Res. Rob. Res. Rob. Res.

0.65 1,751,609 1,775,124 0 7.94 1,751,723 1,748,361
0.7 1,752,020 1,775,043 0 7.95 1,752,081 1,748,361
0.75 1,752,541 1,775,043 0 7.94 1,752,721 1,748,361
0.8 1,753,051 1,775,043 0 7.94 1,753,403 1,748,361

The experiment results are presented in Table II and Ta-
ble III. In Table II, the β is fixed to 0.8. The average costs
for both the base-case and worst-case oriented models vary
with the choices of α. The largest average cost is $1,768,398
which is obtained when α = 5 in the worst-case oriented
model. In contrast, the average cost is $1,763,458 for the
base-case oriented model, which is $4,930 cheaper than that
for the worst-case oriented model. It can be observed that
the average cost decreases with the decrement of α. For the
same α, the average cost for the base-case oriented model is
always smaller than that for the worst-case oriented model.
Another observation is that the average cost difference for the
two models is also an increasing function with respect to α.

In Table III, the α is fixed to 3, and β varies. It means
that bounds of the uncertainty at individual buses remain the
same while the system-wide uncertainty changes. The smallest
average cost is obtained in the base-case oriented model when
β = 0.6. Table III shows that average costs obtained in both
base-case and worst-case oriented models is an increasing
function with respect to β. The difference of the average cost
for these two models also increases with the increment of the
system-wide uncertainty. In this subsection, it can be observed
that the base-case oriented model is less conservative than the
worst-case oriented model.

C. Comparisons with Reserve Requirement

In the U.S. electricity markets, a certain level of reserve
services are normally maintained. Spinning reserve can pro-
vide required ramping capability in the system for accom-
modating the variations of loads and generations. However,
load following is not always guaranteed by these reserve
requirements. Due to the network congestions, the ramping
capability sometimes cannot be delivered to the buses with
uncertain loads. In this part, uncertainties are assumed for
loads at buses 15, 54, 59, and 80. The RC requirement is
relaxed. The experiments are performed as follows, 1) solve
the conventional SCUC problem with 10% spinning reserve
requirement and the proposed robust SCUC model, then obtain
two sets of base solution; 2) randomly generate 2000 scenarios
assuming normal distribution for uncertainties, and check the
feasibility of each scenario and calculate the average cost of
re-dispatch for all scenarios. A scenario is feasible for the base
solution when generation/load shedding is not required.

Table IV presents the simulation results where α = 0.85
and the penalty for infeasibility (generation/load shedding) is
$5000/MWh. Uncertainty degree increases with the value of
β. It can be observed that the average cost and base-case

TABLE V
AVERAGE COST AND FEASIBILITY COMPARISON α = 0.75

Average Cost ($) Infeasibility (%) Base Cost ($)
β Rob. Res. Rob. Res. Rob. Res.

0.6 1,749,988 1,762,201 0 5.05 1,749,810 1,748,361
0.7 1,750,562 1,762,531 0 5.03 1,750,389 1,748,361
0.8 1,751,321 1,762,539 0 5.02 1,751,117 1,748,361

cost for robust approach, column “Rob.”, are very close to
each other. In this case, we can estimate the average cost
from the base-case cost, which is useful in practice. Note
that this conclusion is obtained under the assumption that load
deviations follow a normal distribution. The average cost for
the robust approach increases with the increment of β. It makes
sense as bigger β means larger set for uncertainties, which
makes the feasible set of (P2) smaller and leads to higher
base-case cost. On the contrary, the base-case and average
cost of SCUC with reserve requirement, column “Res.”, barely
changes with β. Another important result from Table IV is
the robustness comparison between the robust approach and
the reserve approach. It can be observed that the unit can
always be re-dispatched to follow the uncertainties from base-
case dispatch solutions in the robust approach. However, the
dispatch solutions in the reserve approach cannot immune
against all uncertainties. About 7.94% scenarios are infeasible
when conventional SCUC is employed. Due to the high penalty
of the unfollowed uncertainty (generation or load shedding),
the average cost of the reserve approach is around 1.28%
higher than that of the robust approach proposed in this paper.

Table V shows the results for α = 0.75. The interval of
the uncertainty is reduced. It can be observed that the average
costs of both approaches are lowered. The infeasible scenarios
in the reserve approach is also reduced to 5.02% from 7.94%.
By comparing the data in Table V and Table IV, an interesting
observation is that the infeasibility rate is not related to the
aggregated uncertainty value (i.e. β), but with the uncertainty
on individual buses (i.e. α). It indicates that the total ramping
capability provided in the system is sufficient in these cases,
but due to transmission line congestion, the ramping capability
cannot be delivered to the desired buses.

D. Computational Burden Comparisons

In this part, computational burdens are compared for the
original approach (the approach in Section III) and the de-
composition approach. Due to the large solution time for the
original approach, “TimeLmit” is set as 3600s and “MIPGap”
is set as 0.005 in GUROBI. Uncertainties are considered at 10
buses, and the SCUC problems for 1 Day, 2 Day, and 3 Day
are simulated in this part. The solution times and the base-case
costs are presented in Table VI. According to the experiments,
more than 95% of the computation time is spent on solving
the max-min problem (SP). Simulations are terminated due to
the “TimeLimit” when solving the single MILP problem (SP)
in the original approach. Hence, the CPU times “OriTime” for
solving the entire problems are close and large for 1 Day, 2
Day, and 3 Day. In comparison, simulations are terminated as
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TABLE VI
CPU TIME COMPARISON

T (h) DecTime (s) OriTime (s) DecCost ($) OriCost ($) UnFo (MW)

24 67 11,328 1,901,851 1,901,851 0
48 151 10,911 3,806,850 3,806,787 0.4
72 580 11,007 5,498,230 5,498,041 0.81

the gap limits are reached in the decomposition approach. The
CPU times “DecTime” are much less than “OriTime”. It can be
further reduced if parallel computing techniques are employed.
Since the gaps are not reached in the original approach, the
solution quality cannot be guaranteed. It is observed that
costs “OriCost” obtained by the original approach are smaller
than costs “DecCost” obtained by the decomposition approach
for 2-Day and 3-Day problems. In other words, the (MP)
in the original approach is a relaxed problem of that in the
decomposition approach. It indicates that the UC and dispatch
solution from the original approach cannot immune against all
the uncertainties while respecting the re-dispatch constraints.
This is the adverse impact of losing gap guarantee on solving
(SP). The last column UnFo shows the largest unfollowed
uncertainty for the original approach.

VI. CONCLUSION

A novel non-conservative robust SCUC model is proposed
in this paper. Instead of considering the worst-case scenario,
the base-case scenario is optimized while ensuring that the UC
and dispatch solution can immune against all the uncertainties.
A new concept RC requirement is proposed to define the
upper bound of the redispatch cost when uncertainties are
revealed. Extreme points based solution approach is used to
solve the problem. A decomposition approach is proposed to
accelerate the solution process. Simulations on the IEEE 118-
bus system demonstrate the effectiveness of the model and
solution approach. Most importantly, the two largest obstacles,
conservativeness and absence of robust dispatch, to applying
robust SCUC in real markets are removed in this paper. In
addition, the computational challenge for the proposed robust
SCUC model is also effectively addressed by the proposed
decomposition approach. Accordingly, it is possible to apply
the proposed robust SCUC model and the associated solution
approach in real electricity markets.

The research on the robust SCUC and dispatch with known
PDF information is ongoing. In this case, the objective func-
tion can be replaced with the expected cost. In this paper, the
acceleration is achieved by Relax-and-Enforce decomposition.
The computation burden of (SP-1-t) or (SP-2-t) for a single
time interval could still be large if the number of extreme
points is overwhelming. This could be a challenging and
interesting research topic.

The pricing of energy plays a crucial role in applying
the robust model in the real market. As the robust SCED
solution is available in the proposed framework, it is possible
to determine the energy price considering uncertainties. The
related works are available online [25].

In this paper, the units are re-dispatched to accommodate
the uncertainties. It is thus possible to introduce the flexible
resource biddings in the proposed model. In this case, the
recourse cost requirement becomes a useful criteria of opti-
mizing the flexible resources in terms of the energy cost.

APPENDIX A
PROOF OF THEOREM 1

From (SP-BI), the f(ε) can be explained as the maximum
value of −λ>g̃−λ>Eε−µ>∆̃, which is an affine function
regarding ε, over infinite points (λ, µ, γ) satisfying constraints
(22-24). According to the convex theory [26], pointwise supre-
mum over an infinite set of convex function is convex.

APPENDIX B
EXTREME POINT FORMULATION

Consider a typical budget formulation {
¯
uit ≤ εit ≤

ūit, Lt ≤
∑
i εit ≤ Ut} where εit is the uncertainty at bus

i at time t. The closed form of extreme point is

εit =
¯
uit + zuit(ūit − ¯

uit)

+zLit

(
Lt −

∑
k

(
¯
ukt + zukt(ūkt − ¯

ukt)
))

+zUit

(
Ut −

∑
k

(
¯
ukt + zukt(ūkt − ¯

ukt)
))

=
¯
uit + zuit(ūit − ¯

uit)

+zLit

(
Lt −

∑
k

¯
ukt

)
+ zUit

(
Ut −

∑
k

¯
ukt

)
−(zLit + zUit )

∑
k

zukt(ūkt − ¯
ukt),

where binary variables zuit, z
L
it, and zUit are indicators of εit

being bounded by ūit, Lt, and Ut respectively. And k is an
alias of i. Constraints for binary indicators are zuit+z

U
it +zLit ≤

1,
∑
i z
U
it + zLit ≤ 1, Lt ≤

∑
i εit ≤ Ut,∀i, t.

Consider the budget set shown in [8],

U := {(ε1, · · · , εT ) ∈ RNd × · · · × RNd :

−ūt ≤ εt ≤ ūt,∀t (33)∑
m

|εm,t|
um,t

≤ Λ∆
t ,∀t} (34)

where um,t is the bound of the uncertainty, which is an entry
in vector ūt. When Λ∆

t is an integer, as shown in [10], its
extreme point can be formulated as

εm,t = zum,tum,t − zlm,tum,t (35)

zlm,t + zum,t ≤ 1,∀m, t (36)∑
m

(zlm,t + zum,t) ≤ Λ∆
t ,∀t (37)

zlm,t, z
u
m,t ∈ {0, 1}. (38)
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APPENDIX C
PROOF OF PROPOSITION 2 AND THEOREM 2

The optimal points [ε∗
>

1 , · · · , ε∗>T ]> obtained by solving
(SP-1-t) and (SP-2-t) are extreme points of U . Since number of
extreme points of U is finite, the iteration terminates finitely.
On the other hand, W is a subset of U , therefore solution
to (MP) is a lower bound of the optimal value to (P2).
Once (x∗, p∗) from (MP) satisfies the feasible conditions in
Proposition 1, the optimal value to (MP) is also the optimal
value to (P2).
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