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Abstract—The potential economic impact of transmission line
rating (TLR) attacks in two-settlement electricity markets is
studied in this paper. We show that nodal prices in real-time
markets can be manipulated via a TLR attack, which can be
modeled as a bi-level optimization problem. Several accelation
techniques are developed to reduce the computational buraeof
solving the bi-level problem. A heuristic strategy is propsed to
deal with the issue of multiplicity in pricing. The uncertainties in
load are also considered in the proposed TLR model. Numerida
simulations demonstrate that well-designed TLR attacks ca ma-
nipulate the profits of market participants in the two-settlement
markets. Benchmark testing shows that the proposed accelation
techniques can reduce computation time tremendously and th
proposed heuristic strategy can mitigate the issue of mulglicity
in pricing.

Index Terms—False Data Injection Attack, Transmission Line
Rating Attack, Pricing Multiplicity, Two-settlement Elec tricity
Market.

NOMENCLATURE

Indices

i,ln index for generator, line and bus
Constants

Ny, Ny numbers of generators and lines

N’u}

c cost coefficient vector

v, U virtual transactions vector, the” entry in v

&o 4, Ppa day-ahead market LMP vector, generation

d,d, load vector, load at bus

K, bus-generator incidence matrix

K, bus-load incidence matrix

rr,. shift factor matrix, shift factor row for liné
F{i generation shift factor for generatorand linel
7#,r,7, initial, lower/upper limit vectors for TLR
71,71,7  initial, lower/upper limit for TLRs of linel

S number of lines allowed to be compromised

M, e Big-M and small perturbation
Variables

® profit due to TLR attack

Grr Real-time market LMP vector

z total system operation cost

p generation vector

T, 7 TLR vector, TLR of linel

A Lagrangian multipliers for (10)
pt, p=  Lagrangian multipliers for (11)

w,p;  Lagrangian multiplier entries in vectgrt, pu~
B+,8~ Lagrangian multipliers for (12)
", 8;  Lagrangian multipliers entries in vectgt, 8-

fi DC power flow of linel

b, bf indicators of linel flow binding in negative or
positive direction
g;,9;  indicators of uniti generation reaching its lower

or upper limit
Y indicator of TLR of linel being changed
Sets and functions
J, © possible binding lines and uncertain load buses set
(«)T transpose of vector or matrix

I. INTRODUCTION

ITH the development of smart grids, both the physical

power grid and electricity markets are undergoing
intense evolution [1]-[3]. New sensors and instruments are
being deployed in power systems to collect data, which are
then sent to control centers. Sending, receiving, and pseace
ing these data require more Information Technologies (IT)
infrastructures be applied [4], [5]. While the IT techndleg

number of pieces to approximate the cost curvgfovide system operators more capabilities of monitoring a

controlling the operating states of the system, they alssepo
new challenges to maintain the cyber-security of the system

Security in power systems include information security,
infrastructure security, and control security. Besides th
network, generations and other equipments are also cathect
to the grid, and most of them are centrally controlled. Super
visory Control and Data Acquisition (SCADA), and Energy
Management System (EMS), and Generation Management
System (GMS) are used in the electricity industry to supservi
control, optimize, and manage the generation and trangmiss
systems [6]. Software tools are used by Regional Transmis-
sion Organizations (RTOs) and Independent System Opserator
(ISOs) in electricity markets to optimally commit and disga
generation resources to meet demands.

Two-settlement market model dominates the electricity-mar
kets in the U.S. It includes day-ahead market (DAM) and
real-time market (RTM) [7]. Settlements are performed at
each market seperately. In DAM, RTOs/ISOs run Security-
Constrained Unit Commitment (SCUC) to determine the op-
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constraints, such as load balance constraints, reseruireeq
ment and transmission capacity limits, as well as unit-wise



constraints such as generation capacity constraintspmimi  A. Related Work

on/off time requirement, ramping up/down rate limits. In\RT . The issue of cyber attack in power system has attracted a

which is also called balance market, energy imbalance . ; N
managed by solving rolling SCUC and Security—Constrain%c’i of attentions in recent years [15], [21]-{25]. Researsh

Economic Dispatch (SCED). The majority of the market igsve proposed false data injection attack models agaismigt st

) . . . timation in [21]. By acknowledging the grid information,
cleared in DAM based on Locational Marginal Price (LMP) , g . .
and deviations between DAM and RTM are settled accordithe attacker may manipulate system operating point otifaine

o ex-post real-time LMPs [9], [10]. state estimation software. [21] shows that traditionates

Transmission network in DAM is not always the same a%stlmatmn in power system is vulnerable. Protection atyiat

that in RTM. The difference could be status change due % ainst the false data attacks are proposed in [26] undee som
circumstances.

the unforeseen line outages in the grid although transamissi ) e
owners usually inform RTOs/ISOs the scheduled outages inAuthors in [15], [24] proposed load redistribution attack

advance. The difference could also be transmission linegat agam_st state _estimation. _The_fal;e_ load injection attaek r
sspectlng power flow equations is difficult to detect. In [2ip

(TLR) change due to weather or other operating Condltlonal]thors analyzed economic impacts of injecting false Iaad.d

For e>_<amp|e, the effective TLRs fo_r lines within a SyStenhtudies in [15], [24], [27] focus on the false load injection
especially those near the geographical border of the systzgl

may vary due to the changes of external power flows. ecently, [23] studied the impacts by real-time price signa

stated in [11], [12], the changes of TLRs are not rare i%tack in electricity market with price-sensitive loadsida

the PIJM market as well as in other markets. So, attacké;uéthorS in [25] reported the attack of introducing the rargpi

can manipulate the effective TLRs via false external pow ta in the SCADA glatabasg. .
flow information. Attackers may also compromise sensors andThe rest of paper Is organized as follows. In Sectlon ”.’ the
send false TLRs to the SCADA/EMS. It is also possible tthLR at_tack model 1S formulated. The acceleration tec_hquue
attackers may change the TLRs in the SCADA/EMS databa%fesowIng the re?”'_“T‘g MILP pr_oble_m are pr_esenteql in Sec-
directly. tion Ill. The multlpllcn.y of LMP is d|scgss_ed in Sgctlon V. _

In this paper, we demonstrate that attackers are able to gyﬁe .model conS|d_er|ng load uncerta|nt|es_ is discussed in
economic benefits by attacking a limited number of TLRs iRection V. In Section VI, the case study is presented. We
the two-settlement markets. The contributions of this pap‘?eOnCIUde the paper in Section VII.
are:

1) The TLR attack is formulated as a bi-level optimization ||, M oDEL OF TRANSMISSIONLINE RATING ATTACK

model, in which the objective of the attacker is to max-

imize the profit of arbitrage between the two-settlement It 1S assumed in this paper that the attacker has the full
electricity market. knowledge of the system including system load, generation

2) The bi-level model is converted into a single-level mixe@0St information, unit output limits, and network inforruat
integer linear programming (MILP) problem using KKT-2nd can manipulate a limited number of TLRs.
based approach and Big-M method in [13]. However,
the Big-M method IS (_:omputatlonally expensive [14]7A. Objective and Constraints of TLR Attack
[16]. Although sophisticated general cutting planes are
employed in modern MILP solvers [17]-[19], the per- As DAM is a forward market, the energy consumed and
formance is generally poor due to the Big-M coefficienproduced is not necessarily the same as that in RTM. It is
of binary variables when the problem size is large. Timevitable that generations and loads in RTM will deviate
achieve better computation performance, tight bouritbm those in DAM. The deviations lead to LMP differences
is used in [16]. An effective techique to tighten théetween DAM and RTM as well as profit uncertainties, which
coefficients for a class of formulation is presented ipose financial risk for market participants. Virtual tractgans
[20]. In this paper, we have explored the special structusge introduced as financial instruments to hedge these. risks
of the problem, and developed several high performanébey include virtual Increment offers (INC) and Decrement
cutting planes. We have also proposed a technique higls (DEC). INC behaves like dispatchable generation and
reduce the number of binary variables, which helps tHeEC behaves like price-sensitive demand in the market. Mar-
solver to exclude non-optimal binary combinations iket participants submit the INCs (DECs) in DAM, and collect
advance. Simulation results show that these technigu@gy) money based on day-ahead LMB, according to
can reduce computational burden tremendously. the cleared amount. The exact amount of cleared INCs and
3) To our best knowledge, we are the first to analyze ti@ECs must be purchased (sold) back later based on real-time
multiplicity issue of LMPs due to cyber attacks. We als&MP ¢+ in RTM. INCs and DECs are included in the LMP
address the issue via a heuristic method that effectivaiglculation in DAM, but not in RTM. Virtual transactions are
mitigates the degeneration cases of linear programminged to improve the convergences between DAM and RTM,
4) The uncertainties of loads is modeled into the TLRnd promote the market liquidity as pure finical productsrélo
attack problem. Stochastic approach is employed ¢etails can also be found in [9], [28], [29].
obtain the maximum expected profit from an attacker’s Different from generation and price-sensitive load, the
point of view. amount of virtual transaction is not impacted by the changes



of energy pricing in RTM. The profit of a market participant and (\, ut, p7) € argmin 2 (8)

from virtual transaction is p
- st. z>¢'p (9)
(¢RT - ¢DA) v, (1) ]_Tp — le )\ (10)
where day-ahead LMIlgy 4 is determined in DAM.w is the —r <T'(Kpp— Kqd) <r p,put (11)
virtual transaction vector, and its dimension is the number p<p<P 8-, 8%.(12)

of buses. The real time LMRpr, is a function of gener-
ation, transmission, and load data. Once the TLR data Tihe upper-level problem (3-7) is to maximize the profit where
compromised, the energy pricing can be manipulated. LELR vector r is the decision variable. The pricégs is
¢rr(7) and ¢rr(r) denote the LMPs before and after thebtained based on the dual solution to the lower-level gnobl
TLR attack, respectively is the true TLR vector whilg: is  which is the SCED performed by 1SOs/RTOs when the TLR
the compromised one. The change of profit due to the TLR changed. Equation (6) represents the attacker’s profit of
attack is arbitraging between RTM and DAM via virtual transaction
T vectorv. The terme, , v is constant and determined in DAM.
(¢Rr(7’) — ¢Rr(f)) v. (2) LMPs formulation is presented in (7) whede p* and p—
. . . . are the Lagrangian multipliers for constraints (10) and) (11
NOte,that¢RT(r) is the only var|.a.b!e in (2) gnd IS &SPy 1 is the shift factor matrix. The attack resource limits
functl_on of r based on the sensitivity analysis theory [30], (3-4). In the lower-level problem, the ISO/RTO mininsize
Also if a generator owner launches the attack, the change,of 1 operation cost (8), respecting generation/lagartze
its profit can be formulated as constraint (10), line flow limits (11), and generation limit
T . T (s N (12). d is the load vector ang is the generation vector.
¢RT(T)(p(T) pDA) ¢RT(T)(p(T) pDA)’ The lower-level problem is a linear programming (LP)
where ¢ (r)p(r) is a quadratic term, and the awardpd problem, WI_‘li_Ch is convex. H_epce, the Karush-Kuhn-Tl_J(_:ker
is also a function ofr. In this case, the problem become§KKT) conditions are the sufficient and necessary condstion
more complicated. For simplicity, we only consider attackaf the optimality. This bi-level problem is then converted
from entities engaging in virtual transactions in this pajoe into a single-level linear problem with linear complementa
illustrate the market impacts of TLR attacks. constraints (LPCC) [14], [31].
For practical reasons, we assume that the changes of TLRs max o (13)
are within given limits to avoid being detected and the &iac T
has limited resources to change TLRs. Particularly, if the S.t. (6—7),(3—4),(10—12)

protective device, such as relay, is not compromised fa, lin c+ K;FT(N+ —u7) + B — B+ = 0(14)

the upper bound of TLR _must be limited below the pickqp pi (T (Kpp — Kad) — 1), = 0,V (15)

level of the relay. Otherwise, the response of the protactio "

system to line overloading, such as line tripping, can iasee (=T (Kpp — Kqd) — 1), =0,V (16)

the risk of the attack being detected. In this paper, theureso B (pi —pi) =0,Vi 17)

constraints of TLR attack is modeled as B; (—pi + pi) = 0,Vi (18)
P — (P =)y < <P (= )y, Vi (3 urou,B8%,87 >0, (19)
zl:yl <5, ) where ul*,u;,ﬁ;“ and g; are entries in vectop*, u—, 8%

and B8~. The complementary slackness constraints (15)-(18)
wherey; is the indicator of TLR of linel being changed:; are nonlinear. Due to the nonconvexity, a problem with this
andr, represent the lower and upper bounds of changed Tlfpe of constraints is normally hard to solve. Big-M methsd i
r; for line [. Constraint (3) indicates whether the TLR of a lin@mployed to linearize these complementary constraintstigxa
is compromised, and (4) means the attack is constrained [bg], [16]. By choosing a propet/, modern MILP solver can
the limited resources. The number of compromised lines musg$ used to solve the problem. For example, constraint (17) is
be less thars. Coefficients can be added in (4) to represerbnverted into a linear form as
other types of constraints, such as cost constraint. “M(1—g") < pi— i Vi,

0< B < Mg} Vi,

B. Bi-level and MILP Formulations for TLR Attack gj € {0,1},¥i,

The TLR attack problem can be formulated as a bi-level

optimization problem where M is a big enough constant ang is the indicator
of p, = p;. If g = 1, then it can be observed thal <
max (5) Mg is redundant, and the first constraint is equivalent to

_ T p; —p; = 0 sincep; — p; < 0. Similarly, it can be shown that
St¢ < (Pur ¢D‘_“r) Y . ~ ©) the above constraints are equivalentto= 0 if g/ = 0. As

$rr = AL+ T (—p* +p7) (7)  the big constand/ is introduced, it is called Big-M method in
(3-4) literatures. We can tightef/ for constraints (11) and (12) in



this paper to improve the solution performance. By using Big relaxed continuous CO"Stfaift‘th |
cutting plane

M method, the constraints (11-12) (15-19) are reformulated Y o

) obje'ctwe
—2r (1=bf) < fi—m <0,V (20) ]
—2r (1—by) < —fi — 1 <0,V (21) ~
(pi = Pi)(1 = gi") < pi =i <0, Vi (22)
(pi —pi)(1—g;) < —pi+pi <0,Vi (23) - .

ptimal point

0<py <Mb,0<p <Mb Vi (24) [EX/
0< B <Mg;,0<p8; <Mg;,Vi (25)
bl+ + b; <1, 9i+ +g; < 1,v1,14 (26) Fig. 1. lllustration of Cutting Plane
bzrabfvgjvg; € {031}7Vivlv (27)

where f; = T, (Kpp — Kqd) andT,. is shift factor row which can accelerate the computation. The values of thegbrim
TR ) and dual objective functions are restricted within an weeér

for line [. b/,b; andg; are indicators off; reachingr;, —r g
Ll Ji i o ! by these necessary conditions, therefore the gap between th

andp; reachingp; respectively. ds that i |
So far, we can formulate the TLR attack model as a singl@—ever exceeds that interval.
level MILP problem (QP) by substituting constraints (11Theorem 1. Let z(r), » and # denote the optimal value of
12)(15-19) with constraints (20-27). the lower-level SCED problem, lower and upper bounds of
respectively. Assume SCED is feasiblerat r andr = 7.
(OP) max ¢ - -
T Then the following inequalities
st (6-7),(10), (3 —4),

(14), (20 — 27). 2(r) < 2(r) < z(r), (28)

always hold.
Ill. ACCELERATION TECHNIQUES FORTLR ATTACK

MODEL Proof is presented in Appendix A. The lower boun(-)

_ _ _ and upper bound(r) of the operation cost can be obtained
The MILP problem formulated in section Il is computayith little efforts by solving two LP problems. According to

tionally intractable [14]. In order to reduce the compuwtasl (28), the optimal point to the primal SCED problem must
burden, we propose several acceleration techniques in tfigpect

section. The first technique is to generate strong valid, cuts - ~
called cutting planes, that fully take advantage of the ighec { —c' p+2(r) <0 (29)
structure of the MILP problem. The second technique is to c'p—z(r)<o. (30)

reduce the number of binary variables as the computatiorllﬁéqua"ties (29-30) constrain the generatjpin the set near

burden increases in a non-polynomial fashion with the numbg o optimal points. They are two strong valid cuts for prable

of binary variables and with the introduction of Big-M in the(op)_

MILP problem. The optimal point to the dual problem of the lower-level
SCED also respects

A. Addition of Strong Valid Cuts

Modern MILP solvers such as CPLEX and GUROBI em- “(7) T + T
ploy sophisticated branch and cutting method to solve the <=AM7d+ (-p" +p7) TKad
MILP problem. However, cutting planes such as Gomory —(wr+p ) r+p B —p' Bt (31)
and Cover cuts used in those solvers are for general MILP < z(r),
problems, and do not consider the special structure of the ) o
problem (OP). In this section, we develop special stronigvalVhereA, u*, p=, 3+ and3~ are Lagrangian multipliers when

cuts exploring the structure of the MILP-based TLR attacktR i 7. Equation (31) holds forvr € [r,7] and the
problem in order to accelerate the solution process. Thie baSsociated Lagrangian multipliers. With (29), (30), anl){(3

idea of applying the cutting plane is illustrated in Fig. heT t_he_ gap between dual_and primal objective function vjall_lues is

black dots are the feasible integer points and the gray dotf8ited belowz(r) —z(r). However, the tern{u* + p=) "7

the optimal point. By adding an effective cutting plane, thi nonlinear and cannot be added into a MILP solver directly.

upper left area is excluded. Strong cutting plane can shriffkeorem 2. Equations

the feasible region without losing the optimal point [18heT ~ - N T

major challenge of cutting plane methods is how to construct (r) <=Ml d+ (—p" +p7) TKad

effective cutting planes for a specific problem [18], [19]. —wr+p) r+p'B -5 BT (32
I_n problem (OP), t_he strong duality condition (i.e. the 2(r) > - MTd+ (—p* + p~ ) TKad

objective values of primal and dual problems are the same) (4 4+ B —FT A (33)

is not explicitly listed. Here we develop four sets of neeegs ® ® P p

optimality conditions that explore the strong duality citioah, are necessary conditions of (31) .



Proof is presented in Appendix B. Theorem 2 provides
another two strong valid cuts for problem (OP). These two in-

equalities regarding the dual problem constrain the Lagjean

multipliers near the optimal points. If the SCED problem is

infeasible at- = r, thenz(r) = oo. In fact, z(r) andz(#) can

be replaced with any tighter bounds according to the availab

resources to the attacker.

LMP
sMw) A

Another two cutting planes can be derived for the binding . >

indicators of the generation limit constraints. It is easgtiow
that there exists an integér< k; < N,, such that
k1—1 k1
= T =
> P, S1TA< Y b, (34)
m=1 m=1

Piy < Piy < Py, -

Based on equation (34), the following cutting plane
Zgj < k1.

is obtainedk; is an upper bound for the summation gf.
We can also get the upper bound for the summatiop; of
Let ¢; = p; — p;, the following inequality constraints

(35)

ko—1 Ny ko
mZ:l i, <17d— ;Pi < mz:;%m (36)

Ty < Gy < Qi o < Qi

must hold for integek,, wherel < k; < N,. Then, a cutting
plane for the lower bound indicators of generation limits

Ng
> g <ka—1
=1

holds. The computational burden to get integeiin (35) and
integerk, in (36) is very small.

(37)

In this section, we developed cutting planes (29-30), (3

33), (35), (37).

B. Reduction of Binary Variables

Inflection Point ~ Load (MW)

Fig. 2. Multiplicity of LMP

In this paper, the TLRy is not a constant anymore. Hence,
we substituter; with the lower boundr; in (38), and get a
necessary condition

k—1 k

Z Pi, <17d < Z Diy,
m=1 m=1
k—1

. g 9 \p g T (39)
>y, =T b, +T{,17d <r —T, Kad
m=1
ry, >ry. >...>ry,

>l )02 »INg

to identify the inactive constraints. If the network coastt

for line [ is always inactive, the corresponding binary variable
b; is fixed to0. Similarly, the binary variablé, can also be
preprocessed. In the following sections, we denote theilgess
binding line set as/. Those inactive network constraints can
be eliminated from the lower-level SCED problem without
affecting the optimal point.

IV. MULTIPLICITY ISSUE OFLMP

Besides the intractable computational burden, the issue
of multiplicity in pricing is another difficulty in the TLR
Egtack model. The LMP is a natural byproduct of the SCED
problem, and it is a closed form function of the dual solution
Most modern solvers also provide the dual solution while the
primal problem is solved. Under the normal circumstances,
ISOs/RTOs can get a unique price at each node. Multiplidity o

In order to linearize the complementary constraints (15MP occurs when the degenerated basic solution exists [33].

18), the auxiliary binary variable$;,b;, ¢, and g; are

In the degenerated case, there are multiple dual solutizrs e

introduced in (20-27). These variables indicate whether tif the primal optimal point is unique. In fact, the degenedat
original constraints are binding for the SCED problem #ases are not uncommon in LP problem. Shadow prices (i.e.
the optimal point. In practice, many of the these constsainfiual variables) under these circumstances are not unique.
are always inactive. As shown in [32], a large number of Fig. 2 illustrates an example of the LMP multiplicity at

those inactive security constraints can be identified ydsdr

some node. Once the load reaches the inflection point, rfeultip

convinience, the conclusion in [32] is presented as follafvs Optimal points to the dual problem of SCED exist. Then the

k—1 k

Pi, <17d <> pi,
m=1 m=1
k—1 (38)
S, —1f pi, +T{,1Td<r —T,, Kaud
m=1
Flg,il =z Flg,iz Z 2 FiiNg

unigueness of LMP is lost at the specific load level as shown
in Fig. 2. The LMP multiplicity may be very rare if elec-
tricity bids, offers, network parameters, and ancillaryvgses
requirement are given. However, the chances of multiplicit
increase once any of those information is to be determined.
Different ISOs/RTOs may have different strategies of seigc

a fair shadow price in the optimal dual solution pool when
there are multiple prices. It is not easy for an attacker to@ho

holds for integerk, then the forward direction constraint forthe strategies in the TLR attack problem.

line [ is inactive.I'/; is the coefficient for generatay, and
line [ in T, also called generation shift factor sometimes.

Another critical drawback in model (5-12) is that the dual
solution in the optimal point pool that results in larger fiifro



is always picked up. In practice, the chance of the attackerThe new MILP problem is expressed as
gaining that profit is very small. This is because the likedit

of ISOs/RTOs calculating LMPs based on the same dual (STP)mfx “ (43)
solutions as the attacker is extremely low when multiplel dua st y < Zﬁj((ﬁm i — doa)Tv (44)
solutions are available. In a special case, if there exici® ¥ B ; ’

which leads to unbounded profitin (5), then that particular _ = . _ _
r is always a good solution candidate to problem (OP). It is Prr,j =Aj1+T (_“j + “J’)’W(‘ls)
noted that problem (OP) becomes bounded with largenen lij = lej,Vj (46)
the artificial upper bound “Big-M” for the dual variables is ,
. ) i =T (Kpp; — Kqd;),V 47
set, and some dual solutions reach “Big-M”. Although the fi (Kpp; a ,’) J (47)
unreasonable large profit is an optimal value to (OP), the pig (frg—m) =097 (48)
attacker would never gain that profit. py; (frj +m) = 0,15 (49)
In this section, a heuristic way to address the LMP multi- 5%‘ (pij — i) = 0,Yi,j (50)
licity i i d. Wh d ted soluti Xi 2 .
plicity issue is propose en a degenerated solutionsgits 85, (—=pij +pi) = 0,Yi, ] (51)

means that the number of binding constraints of the optimiza Tt " . - _
tion problem at the optimal point is larger than the number of ¢+ K, T'" (pu; — p;) +8; — B; +A,;1 = 0,V(52)

variables [30]. In this case, we establish necessary dondit p<p; <P,Vj (53)

for non-degeneracy as r<r<ip (54)
+ ,—- B+ A— :

STOF+0)+> (g +97) <N,—1,  (40) Ajs b5 b5 05,85 2 0,95, (55)

! i where subscript represents the variable(s) in scengri®rob-
—ri+e(l=b) < fism—e(l-b/),l€J, (41) |em STP is a large-scale LPCC problem with a computational
where (40) guarantees no more thalp constraints in (10-12) burde_n much larger thgn that of problem (OP). Note that the
are active at the optimal points, and forces the originas fré®chniques developed in Il are still applicable.
dual variables to be zero due to constraint (24). Ané | f;|
is larger than a small constantwhend = 0 or b, = 0 in V1. CAsE Stupy
(41) . The above condition, although not a sufficient conditi ~ The TLR attacks are simulated in this section using the
excludes most of the degenerated solutions in our simaigtiomodified IEEE 14-Bus and IEEE 118-Bus testing systems.
Simulations on the IEEE 14-Bus system illustrate the ba-
sic ideas presented in this paper. And the IEEE 118-Bus
system is employed to show the effectiveness of the pro-
In practical system, the load and generation in RTM magosed acceleration techniques. It is performed on IntelnXeo
deviate from those in DAM, especially with the renewabl&7340@2.40GHz 64GB RAM using GUROBI 5.6.3 [17].
energy and price-sensitive load. Forecasting errors are in
evitable even if the state-of-art technology is employeghét, A. Modified IEEE 14-Bus Testing System
both the ISOs/RTOs and attackers cannot predict exactly therpe one-line diagram of the modified IEEE 14-Bus system
level of load and generation. So far, stochastic and robuystshown in Fig 3. There are 5 generators and 11 loads in the
optimization techniques have been applied successfullién gy qiem Al the 14 nodes are connected by 20 transmission
SCUC problem to address the uncertainty issue [34]-[36]. |ines. The original data can be found at [37], and a modified
As shown in [36], generation variation can be modeleghrsion is used in this paper. The transmission line data are
as negative load in the SCED problem from a mathemafiasented in Table I. And Table I lists other data including
point of view. In this paper, we assume that the probabilifg,yer/upper limits of generator outputs, fuel cost, loadd a
distribution function (PDF) of the uncertain load is avhl&to yjtyal transactions. The positive and negative values for
both ISOs/RTOs and attackers. The scenario-based st@chagiyal transaction refer to sale and purchase, respégtiite
optimization approach is employed to solve the SCED problg@ 55sumed that unit commitment is determined in advance,
considering uncertainties. The uncertain load is modeted agnq gl the units in the system are committed. Generation and
d, <d, <d,neo, (42) load informatioh is as_sumed accurate. Three cases aréelteste
1) Case 1: Single incremental costs of generators are used.
where® is the index set of uncertain loads. 2) Case 2: Stepwise incremental costs of generators are
The objective of the attacker is to maximize the profit of the used.
virtual transactions by manipulating LMPs in RTM. However, 3) Case 3: Several lines are protected and cannot be com-
the loads at some nodes are not determined at the moment Ppromised.
of designing the attack vector. Based on the PDF information 1) Case 1: The TLR vector is constrained by € [# —
several scenarios are generated with the probability ofesste 0.15#,# + 0.15#]. The simulation results are presented in
j being w; [34]. Then the objective of the attacker is tolable Ill. In the base case, no TLR attack vector is injected
maximize the profit expectation of the virtual transactiong.e. S = 0). The LMPs reflect the true value of the power
based on these scenarios. at each node. Line 1 and line 4 are binding in this case,

V. UNCERTAINTY OF LOAD AND GENERATION
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Fig. 3. |EEE 14-Bus Testing System.

TABLE |

TRANSMISSION LINE DATA FORIEEE 14-BUS SYSTEM

from to reactance rating (MW)
1 2 0.05917 120
1 5 0.22304 45
2 3 0.19797 70
2 4 0.17632 30
2 5 0.17388 80
3 4 0.17103 60
4 5 0.04211 55
4 7 0.20912 30
4 9 0.55618 50
5 6 0.25202 90
6 11 0.1989 50
6 12 0.25581 30
6 13 0.13027 60
7 8 0.17615 50
7 9 0.11001 50
9 10 0.0845 100
9 14 0.27038 20
10 11 0.19207 60
12 13 0.19988 50
13 14 0.34802 20
TABLE Il

GENERATION AND LOAD DATA FOR |IEEE 14-BUS SYSTEM

bus p (MW) pMW) I.C." dMW) v(MW) o™ 5" c”
1 40 200 30.327 0 0 0.043 20 0
2 30 140 625  52.87 0 025 20 0
3 15 90  41.05 177.6 25 0.01 40 0
4 0 0 0 38.85 0 0 0 0
5 0 0 0 19.98 0 0 0 0
6 20 120 1.4 1745 0 0.01 30 0
7 0 0 0 0 0 0 0 0
8 20 110 6.3 0 0 0.01 35 0
9 0 0 0 27.75 =30 0 0 0
10 0 0 0 21.65 10 0 0 0
11 0 0 0 8.33 0 0 0 0
12 0 0 0 14.99 0 0 0 0
13 0 0 0 33.3 0 0 0 0
14 0 0 0 36.63 0 0 0 0
“$IMW T 8/MW?2, $/MW, $. Cost at levep is ap? + bp + c.

TABLE Il
CASE1 RESULT FOR14-Bus SYSTEM

*

S profits($) comp. line  binding line ¢rr3” drre” drT1o

0 231.87 - 1,4 41.05 39.69 39.63

1 2146.90 17 2, 17 77.30 8.00 45.48

2 5804.10 7,17 7,17 153.80 -67.00 -5.07
3 5804.10 3,7,17 7,17 153.80 -67.00 -5.07
10 5804.10 7, 17, others 7,17 153.80 -67.00 -5.07
" Ar=0.157 7 $IMW

is increased from $231.87 to $2146.9. The TLR attack occurs
on line 17, whose TLR is decreased by 2.982 MW. The SCED
problem is performed again according to the false TLR. At the
optimal point, line 2 and line 17 become binding, and line 1
and line 4 are no longer binding. It demonstrates that it is no
necessary to change the TLR of one line directly if the attack
wants to alter the binding status of that line. Instead, iit lba
achieved by TLR changes of other line(s) due to loop flow and
the optimality of the dispatch. Almost half of the profits iyed
by the attack comes from bus 3 and bus 10. The LMP drops
to $8.00/MWh from $39.69/MWh at bus 9, where energy is
to be purchased back in RTM. In comparison, LMP at bus 3
soars to $77.3/MWh from $41.05/MWh, where energy is to be
sold. It indicates that the small change of critical TLRs can
manipulate the LMPs a lot. Consequently, the attacker may
have enough incentives to launch a TLR attack.

The third row in Table Il lists the attack results 8f= 2.
By decreasing the TLRs of line 7 and line 17 by 7.6248 MW
and 2.3289 MW, respectively, the attacker can gain $5804
in RTM, which is almost 25 times of the original profit. In
this case, the LMPs at bus 9 and bus 10 are negative. It
means the attacker pays money for the energy “sold” at bus
10 and collects money for the energy “purchased” at bus 9.
An interesting point is that the attacker is trying to maxmi
the total profit although it loses money at bus 10. The profits
remain the same whefi increases from 3 to 7 as shown in
Table Ill. The attacker’s profit increases monotonicallythwi
its available resources. But after a threshold (fe= 2), the
attacker does not have extra benefits by using more resources

2) Case 2:In this case, the piecewise linear cost model
is used to approximate generators’ quadratic cost curves.
Accordingly, the incremental cost curves are stepwise. The
single incremental cost model in Case 1 is a special caseof th
stepwise incremental cost model whé¥g = 1. In Case 2, the
incremental costs are different at various generationdeios
the same unit. As a result, the LMPs vary more in comparison
with the single incremental cost model. Table IV presengs th
profits the attacker gain when different stepwise increwment
cost models are used. It shows that the maximum profits are
attained whenS = 2 and line 7 and line 17 are attacked

and the market participant collects $231.87 for the virtualo matter how many pieces are used to approximate the cost
transactions. Lagrangian multipliers for the binding $irere curves. The largest profit is $5804 whéh, = 1 andS > 2.
small. Hence, the LMP differences of the three nodes wheFae second largest profit $4389 is achieved whgn= 7 and
the virtual transactions occur are also small. The largd#?L S > 2. Hence, it is observed that the profits do not increase
is $41.05 at bus 3, and the smallest LMP is $39.63 at bus T@onotonically withN,,.

The second row in Table Il shows that the attacker can gainin Case 2, the degeneracy issues are observed and ef-
much more profit by compromising just one TLR. The profitectively addressed by adding (40-41) to the model. And a



TABLE IV where 19,872.2 is a tighter upper bound tham) = oc.
CASE2 RESULT FOR14-BUS SYSTEM ($) It is obtained by dispatching the most expensive genertion
meeting the load demand, which is an upper bound to the

S No=1 No=3 Nw=5 Nuw=7 Nuw=9 optimal point. The other two necessary optimality condisio
12,1469 779.99 57513  471.07  480.47
2 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85 20
3 5804.15 2,480.52 3,809.97 4,389.15 3,372.85 157655-5+Zl°l(/h+ + )
4 5804.15 2,480.52 3,809.97 4,389.15 3,372.85 .
5 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85 *210 .
< —449.38N+ Y nl—p )+ Y vl — bib
TABLE V =1 i=1
CASE 3 RESULT FOR14-Bus SYSTEM ($) 20
< 19,8722+ ) mlpf + ),
S Ny=1 Ny=3 Ny=5 Ny=7 Nyp=9 P
0 231.87 22422 189.53 155.74 159.63 . h . .
2 366.09 243.88 288.18 261.18  269.21 plane corresponding to (35) is
3 366.09 243.88 288.18  265.3  274.96
4 366.09 243.88 288.18  265.3  274.96 91 +95 +93 +94 +95 <3.

According to the data in Table Il, we have

good choice ot also helps to avoid the numerical challenge. q1 = 160, ¢2 = 110, g3 = 75, q4 = 100, g5 = 90.
It is set to1 x 10~° in this paper. Consider the scenariol_hen the following sequence

with N, = 5 and.S = 3. Without constraints (40-41), the 9 seq
profit calculated is $246,159 whelW = 1 x 10°. The profit B<qg<qu<qgp<q
increases to $24,543,398 with/ = 1 x 107. Obviously,
this is impossible in practice. These profits are obtaingth wi
degenerated solutions, and multiplicity of pricing occurs plane

fact, the profit is unbounded in two directions. It could by an g7 +95 +95 +9; +g5 <2

number from—oo to co. As an attacker, a possible strategy is ) )

to avoid the degeneracy since the profits are unknown and ffgresponding to (37). From the two cutting planes generate
abnormal LMP increases the risk of the attack being detect@fOVe, it can be seen that at most three upper generation
The profits listed in Table IV are obtained using the strated§nits can be reached simultaneously, and no more than two
in section IV. It should be noted that multiple optimal TLRg_enerators will reach their lower generation limits at thme

to problem (OP) may exist. For example, if the line floWMme: , _ _ o
constraint forl is supposed to be inactive and # 7 at As dlscussgd in Section I, t.hel line flow. b|nd|r_lg binary
the optimal point, then any! satisfyings > | > r, is also vgrlqbles for I|nes_ vvhose flow limit constra_unts _W|II not _b_e
optimal as it doesn’t change LMPs and the optimal value. blndlng_ can be eliminated. Based on the m_actlve condlt_lon
3) Case 3: From the results in Case 2, it is observeahown in (_39),We can reduce the number of Il_m_e flow binding
that line 7 and line 17 are favorable to the attacker. T naiy \+/ar|+abl+es +fr0+m ﬁO tf 1f' '[hei re[nalnmgi ones are
largest profits are obtained by attacking these two linethifn by, b3, b3, by ’_b5 > b i, b,13’ 1,715’ biz, bs, b7, b5 and b14.40The
case, line 7 and line 17 are protected, so the attacker cangfiPer of binary combinations decrease21b from 2%° by
manipulate their TLRs. Table V shows that the maximu'%llmlnatlng the binary variables that can be fixed at zero.
profit that can be achieved is only $366 whsn= 2 and
N, = 1. In other situations, the profits are less than $308. IEEE 118-Bus Testing System
The minimal value of the profit is $243.88, which means the The IEEE 118-Bus testing system consists of 54 gener-
attacker only gains $20 more by changing the TLRs. Thustors, 186 transmission lines, and 91 loads. The detailed
the system operator can effectively mitigate the impachef tdata including generator capacities and cost curves, line
TLR attack by protecting line 7 and line 17. reactances and ratings, and load profiles can be found at
4) Acceleration TechniquesComputational burden for the http://motor.ece.iit.edu/Data/.
IEEE 14-Bus system is small, and the corresponding problemsdn this section, we mainly focus on evaluating the computa-
can be solved in 1s. As the improvement is neglectable, tlienal performance of the acceleration techniques intcedun
main purpose of using this system here is to illustrate ti8ection lll, especially for the scenario-based stochamstidel
basic idea. Detailed benchmark testing is presented in ttensidering load uncertainties. The set of uncertain lcads
next section. The necessary conditions of optimality eelat® = {1,5,7,10,12,13,15,16,50,60,80}. The confidence
to generation levels are formulated as interval of load is[0.8d,, 1.2d,,]. Simulations are performed
with different humber of scenarios from 1 to 6 using the
MILP solver GUROBI. The original MILP problem has 2080
constraints and 1272 variables for one scenario. The nwsnber

is obtained, andi; = 3. Hence, we can generate a cutting

5

15,655.5 < > cip; < 19,872.2,
=1



TABLE VI the multiplicity of pricing is proposed in this paper. We are
COMPUTATION BENCHMARK FORIEEE 118-BJS SYSTEM working on an exact approach that can resolve the multiplici
Origi. WIELL W/ CLUL. W/ E.&C. issue. The research on how to protect the transmission netwo
fime(s) gap(%) time(s) gap(9%) time(s) gap(%) ime(s) gap(% agalnst_ T]_R gttack is also ongoing. The mark_e.t |mpact of
095 446 033 323 025 234 017 o033 transmission line status attack is another interesting toging

842 391 298 178 0.83 099 045 461 investigated.

65.03 1.21 2731 241 152 352 063 204

657.47 443 5148 283 167 369 352 1.7

4628.63 2.49 836.73 2.04 21.09 158 6.89 4.92 APPENDIXA
7200.08 12.36 1931.94 2.18 1148 4.07 1439 3.15

H*

OO WNE

Let x(r) denote the feasible set of generation vegtarhen
the TLR vector isr in the SCED problem (8-12)x(r) C
of constraints and variables increase to 10615 and 57¥¢") € x(7) follows asr < r < 7 holds for anyr in (11).
respectively if 6 scenarios are included. The minimal objective value corresponding to a feasibldset

Table VI presents the computation time and solution qualigfways not greater than that to its subset, so (28) holds.
when different approaches are used. The time limit for the
MILP solver is set to 2 hours, and the gap is set to 5%. The APPENDIXB
parameter _“NumericFopus" is set to 3 to avoid .numeri_cal is- Let n(ut, u—, B+, 3~) denote
sues. The first column lists the number of scenarios coresder N T T T -

The second and third columns show the results obtained based (—#" +1~) TKqd+p 87 —p BF—A17d,

on th_e original approach without applying any acceleratiqfap, equation (31) can be rewritten into

techniques. The 4th and 5th columns list the performance of

the approach with binary variables and inactive constsaint z(7) < n(p*t,p~,8%,87) — (u* + u‘)Tr < z(r).(56)
elimination. The approach including strong cutting plaaes . . .
presented in the 6th and 7th columns. The last two columlr:‘@u"’monS (32-33) in Theorem 2 can also be rewritten as
present results for the approach with both binary variables { 2(F) <n(pt,u=,BH,B87) - (uwt +p)'r (57)
ellm!natlon and cutting planes. S 2(r) > npt p,BY,87) — (wt +p )7 (58)

It is observed that the computation time increases extiemel . ) )
nonlinearly with the number of scenarios. The original ag=°MParing equations (56-58), Theorem 2 is proved as long as
proach is mterrupted due_ to the 2-hour Ilm!t, and the rgdﬁtl (wt +p)Tr < (ut +p)Tr < (ut 4+ p)T7.(59)
gap of the solution obtained is 12.36% with 6 scenarios. It
is observed that the binary variables elimination techaigipolds. We have
can effectively reduce the computation time when the number n s

Y : . 0,7 —r >0,V 60
of scenarios is large. The time is reduced to less than half o 202 (60)
when the number of scenarios is 3, and the advantages swethe product of two left hand sides in (60) is still non-
more obvious with larger number of scenarios. Data in theegative
6th and 7th columns show that cutting planes further reduce (uf +py ) (7 — 1) >0,V (61)
the computation time tremendously. When the number of
scenarios is 5, the approach using cutting planes reduees Iﬂ?nce . o N B
computation time to 21s from 836s and with smaller gap. By (" + )2 (g A+ gy ), VL (62)

adding cutting planes, the third and fourth approaches hapgerefore, the second inequality in (59)
overwhelming advantages over the original approach and the

binary variables elimination only approach. For examphe, t (W + )T = (uf + )7

computation time is less than 15 seconds in the case with 6 !

scenarios, which is only 0.725% that of the second approach. > Z(uf +u )=+ p)r
l

The advantages are due largely to the cuts (29-30) and (32-

33). These cuts dramatically reduce the computationalésurdg \4id. The first inequality in (59) can also be proved
of the MILP by providing a good search area in advance. similarly. Hence, Theorem 2 is proved.

VII. CONCLUSION

An attacker can gain more profit from virtual transactions ir} . .
. . L 1] H. Farhangi, “The path of the smart gridEEE Power Energy Mag.

the two-settlement markets by solving a bi-level optimiaat vol. 8, no. 1, pp. 18-28, 2010.
problem, where the LMPs in RTM are manipulated via falsg2] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart gridthe nemd a
TLR vector injection. Simulation results show that the profi improved power grid: A surveyCommunications Surveys & Tutorials,

. IEEE, vol. 14, no. 4, pp. 944-980, 2012.
gan could be very |arge' so the attacker may have enoqu] S. M. Amin and B. F. Wollenberg, “Toward a smart grid: poveelivery
incentives to launch a TLR attack. In order to accelerate the for the 21st century,JEEE Power Energy Magvol. 3, no. 5, pp. 34-41,
computation, several techniques are developed. The bench- éolc\’f-m and. “Crb o or advancederit infrast
mark testing results on the modified IEEE 118-Bus systerh] M. Cleveland, “cyber security lssues for advancedenied infras

" . g - tructure (ami),” inPower and Energy Society, General Meeting IEEE
validate their effectiveness. A heuristic strategy to addr 2008, pp. 1-5.
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