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Abstract—The potential economic impact of transmission line
rating (TLR) attacks in two-settlement electricity markets is
studied in this paper. We show that nodal prices in real-time
markets can be manipulated via a TLR attack, which can be
modeled as a bi-level optimization problem. Several acceleration
techniques are developed to reduce the computational burden of
solving the bi-level problem. A heuristic strategy is proposed to
deal with the issue of multiplicity in pricing. The uncertainties in
load are also considered in the proposed TLR model. Numerical
simulations demonstrate that well-designed TLR attacks can ma-
nipulate the profits of market participants in the two-settlement
markets. Benchmark testing shows that the proposed acceleration
techniques can reduce computation time tremendously and the
proposed heuristic strategy can mitigate the issue of multiplicity
in pricing.

Index Terms—False Data Injection Attack, Transmission Line
Rating Attack, Pricing Multiplicity, Two-settlement Elec tricity
Market.

NOMENCLATURE

Indices

i, l, n index for generator, line and bus

Constants

Ng, Nl numbers of generators and lines
Nw number of pieces to approximate the cost curves
c cost coefficient vector
v, vn virtual transactions vector, thenth entry in v

φDA, pDA day-ahead market LMP vector, generation
d, dn load vector, load at busn
Kp bus-generator incidence matrix
Kd bus-load incidence matrix
Γ,Γl· shift factor matrix, shift factor row for linel
Γg
l,i generation shift factor for generatori and linel

r̂,
¯
r, r̄, initial, lower/upper limit vectors for TLR

r̂l,
¯
rl, r̄l initial, lower/upper limit for TLRs of linel

S number of lines allowed to be compromised
M, ǫ Big-M and small perturbation

Variables

ϕ profit due to TLR attack
φRT Real-time market LMP vector
z total system operation cost
p generation vector
r, rl TLR vector, TLR of linel
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λ Lagrangian multipliers for (10)
µ+, µ− Lagrangian multipliers for (11)
µ+

l , µ
−

l Lagrangian multiplier entries in vectorµ+, µ−

β+, β− Lagrangian multipliers for (12)
β+

i , β
−

i Lagrangian multipliers entries in vectorβ+, β−

fl DC power flow of linel
b−l , b

+

l indicators of linel flow binding in negative or
positive direction

g−

i , g
+

i indicators of uniti generation reaching its lower
or upper limit

yl indicator of TLR of linel being changed
Sets and functions
J , Θ possible binding lines and uncertain load buses set
(·)⊤ transpose of vector or matrix

I. I NTRODUCTION

W ITH the development of smart grids, both the physical
power grid and electricity markets are undergoing

intense evolution [1]–[3]. New sensors and instruments are
being deployed in power systems to collect data, which are
then sent to control centers. Sending, receiving, and process-
ing these data require more Information Technologies (IT)
infrastructures be applied [4], [5]. While the IT technologies
provide system operators more capabilities of monitoring and
controlling the operating states of the system, they also pose
new challenges to maintain the cyber-security of the system.

Security in power systems include information security,
infrastructure security, and control security. Besides the IT
network, generations and other equipments are also connected
to the grid, and most of them are centrally controlled. Super-
visory Control and Data Acquisition (SCADA), and Energy
Management System (EMS), and Generation Management
System (GMS) are used in the electricity industry to supervise,
control, optimize, and manage the generation and transmission
systems [6]. Software tools are used by Regional Transmis-
sion Organizations (RTOs) and Independent System Operators
(ISOs) in electricity markets to optimally commit and dispatch
generation resources to meet demands.

Two-settlement market model dominates the electricity mar-
kets in the U.S. It includes day-ahead market (DAM) and
real-time market (RTM) [7]. Settlements are performed at
each market seperately. In DAM, RTOs/ISOs run Security-
Constrained Unit Commitment (SCUC) to determine the op-
timal generation schedule for the next day based on the data
in the SCADA/EMS/GMS [8]. The solution respects system
constraints, such as load balance constraints, reserve require-
ment and transmission capacity limits, as well as unit-wise
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constraints such as generation capacity constraints, minimum
on/off time requirement, ramping up/down rate limits. In RTM,
which is also called balance market, energy imbalance is
managed by solving rolling SCUC and Security-Constrained
Economic Dispatch (SCED). The majority of the market is
cleared in DAM based on Locational Marginal Price (LMP),
and deviations between DAM and RTM are settled according
to ex-post real-time LMPs [9], [10].

Transmission network in DAM is not always the same as
that in RTM. The difference could be status change due to
the unforeseen line outages in the grid although transmission
owners usually inform RTOs/ISOs the scheduled outages in
advance. The difference could also be transmission line rating
(TLR) change due to weather or other operating conditions.
For example, the effective TLRs for lines within a system,
especially those near the geographical border of the system,
may vary due to the changes of external power flows. As
stated in [11], [12], the changes of TLRs are not rare in
the PJM market as well as in other markets. So, attackers
can manipulate the effective TLRs via false external power
flow information. Attackers may also compromise sensors and
send false TLRs to the SCADA/EMS. It is also possible that
attackers may change the TLRs in the SCADA/EMS database
directly.

In this paper, we demonstrate that attackers are able to gain
economic benefits by attacking a limited number of TLRs in
the two-settlement markets. The contributions of this paper
are:

1) The TLR attack is formulated as a bi-level optimization
model, in which the objective of the attacker is to max-
imize the profit of arbitrage between the two-settlement
electricity market.

2) The bi-level model is converted into a single-level mixed
integer linear programming (MILP) problem using KKT-
based approach and Big-M method in [13]. However,
the Big-M method is computationally expensive [14]–
[16]. Although sophisticated general cutting planes are
employed in modern MILP solvers [17]–[19], the per-
formance is generally poor due to the Big-M coefficient
of binary variables when the problem size is large. To
achieve better computation performance, tight bound
is used in [16]. An effective techique to tighten the
coefficients for a class of formulation is presented in
[20]. In this paper, we have explored the special structure
of the problem, and developed several high performance
cutting planes. We have also proposed a technique to
reduce the number of binary variables, which helps the
solver to exclude non-optimal binary combinations in
advance. Simulation results show that these techniques
can reduce computational burden tremendously.

3) To our best knowledge, we are the first to analyze the
multiplicity issue of LMPs due to cyber attacks. We also
address the issue via a heuristic method that effectively
mitigates the degeneration cases of linear programming.

4) The uncertainties of loads is modeled into the TLR
attack problem. Stochastic approach is employed to
obtain the maximum expected profit from an attacker’s
point of view.

A. Related Work

The issue of cyber attack in power system has attracted a
lot of attentions in recent years [15], [21]–[25]. Researchers
have proposed false data injection attack models against state
estimation in [21]. By acknowledging the grid information,
the attacker may manipulate system operating point obtained
by state estimation software. [21] shows that traditional state
estimation in power system is vulnerable. Protection strategies
against the false data attacks are proposed in [26] under some
circumstances.

Authors in [15], [24] proposed load redistribution attack
against state estimation. The false load injection attack re-
specting power flow equations is difficult to detect. In [27],the
authors analyzed economic impacts of injecting false load data.
Studies in [15], [24], [27] focus on the false load injections.
Recently, [23] studied the impacts by real-time price signal
attack in electricity market with price-sensitive loads, and
authors in [25] reported the attack of introducing the ramping
data in the SCADA database.

The rest of paper is organized as follows. In Section II, the
TLR attack model is formulated. The acceleration techniques
of solving the resulting MILP problem are presented in Sec-
tion III. The multiplicity of LMP is discussed in Section IV.
The model considering load uncertainties is discussed in
Section V. In Section VI, the case study is presented. We
conclude the paper in Section VII.

II. M ODEL OF TRANSMISSION L INE RATING ATTACK

It is assumed in this paper that the attacker has the full
knowledge of the system including system load, generation
cost information, unit output limits, and network information
and can manipulate a limited number of TLRs.

A. Objective and Constraints of TLR Attack

As DAM is a forward market, the energy consumed and
produced is not necessarily the same as that in RTM. It is
inevitable that generations and loads in RTM will deviate
from those in DAM. The deviations lead to LMP differences
between DAM and RTM as well as profit uncertainties, which
pose financial risk for market participants. Virtual transactions
are introduced as financial instruments to hedge these risks.
They include virtual Increment offers (INC) and Decrement
bids (DEC). INC behaves like dispatchable generation and
DEC behaves like price-sensitive demand in the market. Mar-
ket participants submit the INCs (DECs) in DAM, and collect
(pay) money based on day-ahead LMPφDA according to
the cleared amount. The exact amount of cleared INCs and
DECs must be purchased (sold) back later based on real-time
LMP φRT in RTM. INCs and DECs are included in the LMP
calculation in DAM, but not in RTM. Virtual transactions are
used to improve the convergences between DAM and RTM,
and promote the market liquidity as pure finical products. More
details can also be found in [9], [28], [29].

Different from generation and price-sensitive load, the
amount of virtual transaction is not impacted by the changes
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of energy pricing in RTM. The profit of a market participant
from virtual transaction is

(φRT − φDA)
⊤v, (1)

where day-ahead LMPφDA is determined in DAM.v is the
virtual transaction vector, and its dimension is the number
of buses. The real time LMPφRT is a function of gener-
ation, transmission, and load data. Once the TLR data is
compromised, the energy pricing can be manipulated. Let
φRT (r̂) and φRT (r) denote the LMPs before and after the
TLR attack, respectively.̂r is the true TLR vector whiler is
the compromised one. The change of profit due to the TLR
attack is

(

φRT (r) − φRT (r̂)
)⊤

v. (2)

Note thatφRT (r) is the only variable in (2) and is a step
function of r based on the sensitivity analysis theory [30].
Also if a generator owner launches the attack, the change of
its profit can be formulated as

φ⊤

RT
(r)

(

p(r) − pDA

)

− φ⊤

RT
(r̂)

(

p(r̂) − pDA

)

,

whereφ⊤

RT
(r)p(r) is a quadratic term, and the awardedp

is also a function ofr. In this case, the problem becomes
more complicated. For simplicity, we only consider attacks
from entities engaging in virtual transactions in this paper to
illustrate the market impacts of TLR attacks.

For practical reasons, we assume that the changes of TLRs
are within given limits to avoid being detected and the attacker
has limited resources to change TLRs. Particularly, if the
protective device, such as relay, is not compromised for line,
the upper bound of TLR must be limited below the pickup
level of the relay. Otherwise, the response of the protection
system to line overloading, such as line tripping, can increase
the risk of the attack being detected. In this paper, the resource
constraints of TLR attack is modeled as







r̂l − (r̂l −
¯
rl)yl ≤ rl ≤ r̂ + (r̄l − r̂l)yl, ∀l (3)

∑

l

yl ≤ S, (4)

whereyl is the indicator of TLR of linel being changed.
¯
rl

and r̄l represent the lower and upper bounds of changed TLR
rl for line l. Constraint (3) indicates whether the TLR of a line
is compromised, and (4) means the attack is constrained by
the limited resources. The number of compromised lines must
be less thanS. Coefficients can be added in (4) to represent
other types of constraints, such as cost constraint.

B. Bi-level and MILP Formulations for TLR Attack

The TLR attack problem can be formulated as a bi-level
optimization problem

max
r

ϕ (5)

s.t. ϕ ≤ (φRT − φDA)
⊤
v (6)

φRT = λ1 + Γ⊤ (−µ+ + µ−) (7)

(3− 4)

and (λ,µ+, µ−) ∈ argmin
p

z (8)

s.t. z ≥ c⊤p (9)

1⊤p = 1⊤d λ (10)

−r ≤ Γ (Kpp − Kdd) ≤ r µ−, µ+ (11)

p ≤ p ≤ p β−, β+. (12)

The upper-level problem (3-7) is to maximize the profit where
TLR vector r is the decision variable. The priceφRT is
obtained based on the dual solution to the lower-level problem,
which is the SCED performed by ISOs/RTOs when the TLR
is changed. Equation (6) represents the attacker’s profit of
arbitraging between RTM and DAM via virtual transaction
vectorv. The termφ⊤

DA
v is constant and determined in DAM.

LMPs formulation is presented in (7) whereλ, µ+ andµ−

are the Lagrangian multipliers for constraints (10) and (11)
and Γ is the shift factor matrix. The attack resource limits
are (3-4). In the lower-level problem, the ISO/RTO minimizes
the total operation cost (8), respecting generation/load balance
constraint (10), line flow limits (11), and generation limits
(12). d is the load vector andp is the generation vector.

The lower-level problem is a linear programming (LP)
problem, which is convex. Hence, the Karush-Kuhn-Tucker
(KKT) conditions are the sufficient and necessary conditions
of the optimality. This bi-level problem is then converted
into a single-level linear problem with linear complementary
constraints (LPCC) [14], [31].

max
r

ϕ (13)

s.t. (6− 7), (3− 4), (10− 12)

c + K⊤

p Γ⊤(µ+ − µ−) + β+ − β−+λ1 = 0(14)

µ+

l (Γ (Kpp − Kdd) − r)
l
= 0, ∀l (15)

µ−

l (−Γ (Kpp − Kdd) − r)
l
= 0, ∀l (16)

β+

i (pi − p̄i) = 0, ∀i (17)

β−

i

(

−pi +
¯
pi
)

= 0, ∀i (18)

µ+, µ−, β+, β− ≥ 0, (19)

whereµ+

l , µ
−

l , β
+

i and β−

i are entries in vectorµ+, µ−, β+

and β−. The complementary slackness constraints (15)-(18)
are nonlinear. Due to the nonconvexity, a problem with this
type of constraints is normally hard to solve. Big-M method is
employed to linearize these complementary constraints exactly
[13], [16]. By choosing a properM , modern MILP solver can
be used to solve the problem. For example, constraint (17) is
converted into a linear form as











−M(1− g+

i ) ≤ pi − p̄i, ∀i,

0 ≤ β+

i ≤ Mg+

i , ∀i,

g+i ∈ {0, 1}, ∀i,

whereM is a big enough constant andg+

i is the indicator
of pi = p̄i. If g+

i = 1, then it can be observed thatβ+

i ≤
Mg+ is redundant, and the first constraint is equivalent to
pi − p̄i = 0 sincepi − p̄i ≤ 0. Similarly, it can be shown that
the above constraints are equivalent toβ+

i = 0 if g+

i = 0. As
the big constantM is introduced, it is called Big-M method in
literatures. We can tightenM for constraints (11) and (12) in
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this paper to improve the solution performance. By using Big-
M method, the constraints (11-12) (15-19) are reformulatedas

−2rl (1− b+l ) ≤ fl − rl ≤ 0, ∀l (20)

−2rl (1− b−l ) ≤ −fl − rl ≤ 0, ∀l (21)

(
¯
pi − p̄i)(1 − g+i ) ≤ pi − p̄i ≤ 0, ∀i (22)

(
¯
pi − p̄i)(1 − g−

i ) ≤ −pi +
¯
pi ≤ 0, ∀i (23)

0 ≤ µ+

l ≤ Mb+l , 0 ≤ µ−

l ≤ Mb−l , ∀l (24)

0 ≤ β+

i ≤ Mg+i , 0 ≤ β−

i ≤ Mg−

i , ∀i (25)

b+l + b−l ≤ 1, g+i + g−

i ≤ 1, ∀l, i (26)

b+l , b
−

l , g
+

i , g
−

i ∈ {0, 1}, ∀i, l, (27)

wherefl = Γl·(Kpp − Kdd) and Γl· is shift factor row
for line l. b+l , b

−

l andg−

i are indicators offl reachingrl, −rl
andpi reaching

¯
pi respectively.

So far, we can formulate the TLR attack model as a single-
level MILP problem (OP) by substituting constraints (11-
12)(15-19) with constraints (20-27).

(OP) max
r

ϕ

s.t. (6− 7), (10), (3− 4),

(14), (20− 27).

III. A CCELERATION TECHNIQUES FORTLR ATTACK

MODEL

The MILP problem formulated in section II is computa-
tionally intractable [14]. In order to reduce the computational
burden, we propose several acceleration techniques in this
section. The first technique is to generate strong valid cuts, or
called cutting planes, that fully take advantage of the special
structure of the MILP problem. The second technique is to
reduce the number of binary variables as the computational
burden increases in a non-polynomial fashion with the number
of binary variables and with the introduction of Big-M in the
MILP problem.

A. Addition of Strong Valid Cuts

Modern MILP solvers such as CPLEX and GUROBI em-
ploy sophisticated branch and cutting method to solve the
MILP problem. However, cutting planes such as Gomory
and Cover cuts used in those solvers are for general MILP
problems, and do not consider the special structure of the
problem (OP). In this section, we develop special strong valid
cuts exploring the structure of the MILP-based TLR attack
problem in order to accelerate the solution process. The basic
idea of applying the cutting plane is illustrated in Fig. 1. The
black dots are the feasible integer points and the gray dot is
the optimal point. By adding an effective cutting plane, the
upper left area is excluded. Strong cutting plane can shrink
the feasible region without losing the optimal point [18]. The
major challenge of cutting plane methods is how to construct
effective cutting planes for a specific problem [18], [19].

In problem (OP), the strong duality condition (i.e. the
objective values of primal and dual problems are the same)
is not explicitly listed. Here we develop four sets of necessary
optimality conditions that explore the strong duality condition,

relaxed continuous constraints

objective

cutting plane

optimal point

Fig. 1. Illustration of Cutting Plane

which can accelerate the computation. The values of the primal
and dual objective functions are restricted within an interval
by these necessary conditions, therefore the gap between them
never exceeds that interval.

Theorem 1. Let z(r),
¯
r and r̄ denote the optimal value of

the lower-level SCED problem, lower and upper bounds ofr

respectively. Assume SCED is feasible atr =
¯
r and r = r̄.

Then the following inequalities

z(r̄) ≤ z(r) ≤ z(
¯
r), (28)

always hold.

Proof is presented in Appendix A. The lower boundz(r̄)
and upper boundz(

¯
r) of the operation cost can be obtained

with little efforts by solving two LP problems. According to
(28), the optimal point to the primal SCED problem must
respect

{

−c⊤p+ z(r̄) ≤ 0 (29)

c⊤p− z(
¯
r) ≤ 0. (30)

Inequalities (29-30) constrain the generationp in the set near
the optimal points. They are two strong valid cuts for problem
(OP).

The optimal point to the dual problem of the lower-level
SCED also respects

z(r̄)

≤− λ1T d+ (−µ+ + µ−)⊤ΓKdd

− (µ+ + µ−)⊤r +
¯
p⊤β− − p̄⊤β+ (31)

≤ z(
¯
r),

whereλ,µ+, µ−, β+ andβ− are Lagrangian multipliers when
TLR is r. Equation (31) holds for∀r ∈ [

¯
r, r̄] and the

associated Lagrangian multipliers. With (29), (30), and (31),
the gap between dual and primal objective function values is
limited belowz(

¯
r)−z(r̄). However, the term(µ+ + µ−)⊤r

is nonlinear and cannot be added into a MILP solver directly.

Theorem 2. Equations


















z(r̄) ≤− λ1⊤d+ (−µ+ + µ−)⊤ΓKdd

− (µ+ + µ−)⊤
¯
r +

¯
p⊤β− − p̄⊤β+ (32)

z(
¯
r) ≥− λ1⊤d+ (−µ+ + µ−)⊤ΓKdd

− (µ+ + µ−)⊤r̄ +
¯
p⊤β− − p̄⊤β+ (33)

are necessary conditions of (31) .
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Proof is presented in Appendix B. Theorem 2 provides
another two strong valid cuts for problem (OP). These two in-
equalities regarding the dual problem constrain the Lagrangian
multipliers near the optimal points. If the SCED problem is
infeasible atr =

¯
r, thenz(

¯
r) = ∞. In fact,z(

¯
r) andz(r̄) can

be replaced with any tighter bounds according to the available
resources to the attacker.

Another two cutting planes can be derived for the binding
indicators of the generation limit constraints. It is easy to show
that there exists an integer1 ≤ k1 ≤ Ng, such that











k1−1
∑

m=1

p̄im ≤ 1⊤d ≤

k1
∑

m=1

p̄im

p̄i1 ≤ p̄i2 · · · ≤ p̄iNg
.

(34)

Based on equation (34), the following cutting plane
∑

i

g+i ≤ k1. (35)

is obtained.k1 is an upper bound for the summation ofg+i .
We can also get the upper bound for the summation ofg−

i .
Let qi = p̄i −

¯
pi, the following inequality constraints











k2−1
∑

m=1

qim ≤ 1⊤d−

Ng
∑

i=1
¯
pi <

k2
∑

m=1

qim

qi1 ≤ qi2 · · · ≤ qik2 · · · ≤ qiNg

(36)

must hold for integerk2, where1 ≤ k2 ≤ Ng. Then, a cutting
plane for the lower bound indicators of generation limits

Ng
∑

i=1

g−

i ≤ k2 − 1 (37)

holds. The computational burden to get integerk1 in (35) and
integerk2 in (36) is very small.

In this section, we developed cutting planes (29-30), (32-
33), (35), (37).

B. Reduction of Binary Variables

In order to linearize the complementary constraints (15-
18), the auxiliary binary variablesb+l , b

−

l , g
+

i , and g−

i are
introduced in (20-27). These variables indicate whether the
original constraints are binding for the SCED problem at
the optimal point. In practice, many of the these constraints
are always inactive. As shown in [32], a large number of
those inactive security constraints can be identified easily. For
convinience, the conclusion in [32] is presented as follows. If



































k−1
∑

m=1

p̄im ≤ 1⊤d <

k
∑

m=1

p̄im

k−1
∑

m=1

(Γg
l,im

− Γg
l,ik

)p̄im + Γg
l,ik

1⊤d < rl − Γl·Kdd

Γg
l,i1

≥ Γg
l,i2

≥ · · · ≥ Γg
l,iNg

(38)

holds for integerk, then the forward direction constraint for
line l is inactive.Γg

l,im
is the coefficient for generatorim and

line l in Γ, also called generation shift factor sometimes.

LMP 

($/MW)

Load (MW)Inflection Point

Fig. 2. Multiplicity of LMP

In this paper, the TLRrl is not a constant anymore. Hence,
we substituterl with the lower bound

¯
rl in (38), and get a

necessary condition


































k−1
∑

m=1

p̄im ≤ 1⊤d <

k
∑

m=1

p̄im

k−1
∑

m=1

(Γg
l,im

− Γg
l,ik

)p̄im + Γg
l,ik

1⊤d <
¯
rl − Γl·Kdd

Γg
l,i1

≥ Γg
l,i2

≥ · · · ≥ Γg
l,iNg

(39)

to identify the inactive constraints. If the network constraint
for line l is always inactive, the corresponding binary variable
b+l is fixed to0. Similarly, the binary variableb−l can also be
preprocessed. In the following sections, we denote the possible
binding line set asJ . Those inactive network constraints can
be eliminated from the lower-level SCED problem without
affecting the optimal point.

IV. M ULTIPLICITY ISSUE OFLMP

Besides the intractable computational burden, the issue
of multiplicity in pricing is another difficulty in the TLR
attack model. The LMP is a natural byproduct of the SCED
problem, and it is a closed form function of the dual solution.
Most modern solvers also provide the dual solution while the
primal problem is solved. Under the normal circumstances,
ISOs/RTOs can get a unique price at each node. Multiplicity of
LMP occurs when the degenerated basic solution exists [33].
In the degenerated case, there are multiple dual solutions even
if the primal optimal point is unique. In fact, the degenerated
cases are not uncommon in LP problem. Shadow prices (i.e.
dual variables) under these circumstances are not unique.

Fig. 2 illustrates an example of the LMP multiplicity at
some node. Once the load reaches the inflection point, multiple
optimal points to the dual problem of SCED exist. Then the
uniqueness of LMP is lost at the specific load level as shown
in Fig. 2. The LMP multiplicity may be very rare if elec-
tricity bids, offers, network parameters, and ancillary services
requirement are given. However, the chances of multiplicity
increase once any of those information is to be determined.
Different ISOs/RTOs may have different strategies of selecting
a fair shadow price in the optimal dual solution pool when
there are multiple prices. It is not easy for an attacker to model
the strategies in the TLR attack problem.

Another critical drawback in model (5-12) is that the dual
solution in the optimal point pool that results in larger profit
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is always picked up. In practice, the chance of the attacker
gaining that profit is very small. This is because the likelihood
of ISOs/RTOs calculating LMPs based on the same dual
solutions as the attacker is extremely low when multiple dual
solutions are available. In a special case, if there exists TLR r

which leads to unbounded profitϕ in (5), then that particular
r is always a good solution candidate to problem (OP). It is
noted that problem (OP) becomes bounded with largeϕ when
the artificial upper bound “Big-M” for the dual variables is
set, and some dual solutions reach “Big-M”. Although the
unreasonable large profitϕ is an optimal value to (OP), the
attacker would never gain that profit.

In this section, a heuristic way to address the LMP multi-
plicity issue is proposed. When a degenerated solution exists, it
means that the number of binding constraints of the optimiza-
tion problem at the optimal point is larger than the number of
variables [30]. In this case, we establish necessary conditions
for non-degeneracy as







∑

l

(b+l + b−l ) +
∑

i

(

g+i + g−

i

)

≤ Ng − 1, (40)

−rl + ǫ(1− b−l ) ≤ fl ≤ rl − ǫ(1− b+l ), l ∈ J, (41)

where (40) guarantees no more thanNg constraints in (10-12)
are active at the optimal points, and forces the original free
dual variables to be zero due to constraint (24). Andrl − |fl|
is larger than a small constantǫ when b+l = 0 or b−l = 0 in
(41) . The above condition, although not a sufficient condition,
excludes most of the degenerated solutions in our simulations.

V. UNCERTAINTY OF LOAD AND GENERATION

In practical system, the load and generation in RTM may
deviate from those in DAM, especially with the renewable
energy and price-sensitive load. Forecasting errors are in-
evitable even if the state-of-art technology is employed. Hence,
both the ISOs/RTOs and attackers cannot predict exactly the
level of load and generation. So far, stochastic and robust
optimization techniques have been applied successfully inthe
SCUC problem to address the uncertainty issue [34]–[36].

As shown in [36], generation variation can be modeled
as negative load in the SCED problem from a mathematic
point of view. In this paper, we assume that the probability
distribution function (PDF) of the uncertain load is available to
both ISOs/RTOs and attackers. The scenario-based stochastic
optimization approach is employed to solve the SCED problem
considering uncertainties. The uncertain load is modeled as

¯
dn ≤ dn ≤ d̄n, n ∈ Θ, (42)

whereΘ is the index set of uncertain loads.
The objective of the attacker is to maximize the profit of the

virtual transactions by manipulating LMPs in RTM. However,
the loads at some nodes are not determined at the moment
of designing the attack vector. Based on the PDF information,
several scenarios are generated with the probability of scenario
j being πj [34]. Then the objective of the attacker is to
maximize the profit expectation of the virtual transactions
based on these scenarios.

The new MILP problem is expressed as

(STP)max
r

z (43)

s.t. z ≤
∑

j

πj(φRT ,j − φDA)
⊤v (44)

φRT ,j = λj1 + Γ⊤

(

−µ
+

j + µ
−

j

)

, ∀j(45)

1⊤pj = 1⊤dj , ∀j (46)

fj = Γ (Kppj − Kddj), ∀j (47)

µ+

l,j (fl,j − rl) = 0, ∀l, j (48)

µ−

l,j (fl,j + rl) = 0, ∀l, j (49)

β+

i,j (pi,j − p̄i) = 0, ∀i, j (50)

β−

i,j

(

−pi,j +
¯
pi
)

= 0, ∀i, j (51)

c + K⊤

p Γ⊤(µ+

j − µ
−

j ) +β
+

j − β
−

j +λj1 = 0, ∀j(52)

p ≤ pj ≤ p, ∀j (53)

¯
r ≤ r ≤ r̄ (54)

λj ,µ
+

j ,µ
−

j ,β
+

j ,β
−

j ≥ 0,∀j, (55)

where subscriptj represents the variable(s) in scenarioj. Prob-
lem STP is a large-scale LPCC problem with a computational
burden much larger than that of problem (OP). Note that the
techniques developed in III are still applicable.

VI. CASE STUDY

The TLR attacks are simulated in this section using the
modified IEEE 14-Bus and IEEE 118-Bus testing systems.
Simulations on the IEEE 14-Bus system illustrate the ba-
sic ideas presented in this paper. And the IEEE 118-Bus
system is employed to show the effectiveness of the pro-
posed acceleration techniques. It is performed on Intel Xeon
E7340@2.40GHz 64GB RAM using GUROBI 5.6.3 [17].

A. Modified IEEE 14-Bus Testing System

The one-line diagram of the modified IEEE 14-Bus system
is shown in Fig 3. There are 5 generators and 11 loads in the
system. All the 14 nodes are connected by 20 transmission
lines. The original data can be found at [37], and a modified
version is used in this paper. The transmission line data are
presented in Table I. And Table II lists other data including
lower/upper limits of generator outputs, fuel cost, load, and
virtual transactions. The positive and negative values for
virtual transaction refer to sale and purchase, respectively. It
is assumed that unit commitment is determined in advance,
and all the units in the system are committed. Generation and
load information is assumed accurate. Three cases are tested:

1) Case 1: Single incremental costs of generators are used.
2) Case 2: Stepwise incremental costs of generators are

used.
3) Case 3: Several lines are protected and cannot be com-

promised.
1) Case 1: The TLR vector is constrained byr ∈ [r̂ −

0.15r̂, r̂ + 0.15r̂]. The simulation results are presented in
Table III. In the base case, no TLR attack vector is injected
(i.e. S = 0). The LMPs reflect the true value of the power
at each node. Line 1 and line 4 are binding in this case,
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Fig. 3. IEEE 14-Bus Testing System.

TABLE I
TRANSMISSION LINE DATA FOR IEEE 14-BUS SYSTEM

from to reactance rating (MW)

1 2 0.05917 120

1 5 0.22304 45

2 3 0.19797 70

2 4 0.17632 30

2 5 0.17388 80

3 4 0.17103 60

4 5 0.04211 55

4 7 0.20912 30

4 9 0.55618 50

5 6 0.25202 90

6 11 0.1989 50

6 12 0.25581 30

6 13 0.13027 60

7 8 0.17615 50

7 9 0.11001 50

9 10 0.0845 100

9 14 0.27038 20

10 11 0.19207 60

12 13 0.19988 50

13 14 0.34802 20

TABLE II
GENERATION AND LOAD DATA FOR IEEE 14-BUS SYSTEM

bus
¯
p (MW) p̄(MW) I.C.* d(MW) v(MW) a ** b ** c **

1 40 200 30.327 0 0 0.043 20 0

2 30 140 62.5 52.87 0 0.25 20 0

3 15 90 41.05 177.6 25 0.01 40 0

4 0 0 0 38.85 0 0 0 0

5 0 0 0 19.98 0 0 0 0

6 20 120 31.4 17.45 0 0.01 30 0

7 0 0 0 0 0 0 0 0

8 20 110 36.3 0 0 0.01 35 0

9 0 0 0 27.75 −30 0 0 0

10 0 0 0 21.65 10 0 0 0

11 0 0 0 8.33 0 0 0 0

12 0 0 0 14.99 0 0 0 0

13 0 0 0 33.3 0 0 0 0

14 0 0 0 36.63 0 0 0 0

* $/MW ** $/MW2, $/MW, $. Cost at levelp is ap2 + bp+ c.

and the market participant collects $231.87 for the virtual
transactions. Lagrangian multipliers for the binding lines are
small. Hence, the LMP differences of the three nodes where
the virtual transactions occur are also small. The largest LMP
is $41.05 at bus 3, and the smallest LMP is $39.63 at bus 10.

The second row in Table III shows that the attacker can gain
much more profit by compromising just one TLR. The profit

TABLE III
CASE 1 RESULT FOR14-BUS SYSTEM*

S profits($) comp. line binding line φRT 3
** φRT 9

** φRT 10
**

0 231.87 - 1, 4 41.05 39.69 39.63
1 2146.90 17 2, 17 77.30 8.00 45.48
2 5804.10 7, 17 7, 17 153.80 -67.00 -5.07
3 5804.10 3, 7, 17 7, 17 153.80 -67.00 -5.07
10 5804.10 7, 17, others 7, 17 153.80 -67.00 -5.07

* ∆r = 0.15r̂; ** $/MW

is increased from $231.87 to $2146.9. The TLR attack occurs
on line 17, whose TLR is decreased by 2.982 MW. The SCED
problem is performed again according to the false TLR. At the
optimal point, line 2 and line 17 become binding, and line 1
and line 4 are no longer binding. It demonstrates that it is not
necessary to change the TLR of one line directly if the attacker
wants to alter the binding status of that line. Instead, it can be
achieved by TLR changes of other line(s) due to loop flow and
the optimality of the dispatch. Almost half of the profits gained
by the attack comes from bus 3 and bus 10. The LMP drops
to $8.00/MWh from $39.69/MWh at bus 9, where energy is
to be purchased back in RTM. In comparison, LMP at bus 3
soars to $77.3/MWh from $41.05/MWh, where energy is to be
sold. It indicates that the small change of critical TLRs can
manipulate the LMPs a lot. Consequently, the attacker may
have enough incentives to launch a TLR attack.

The third row in Table III lists the attack results ofS = 2.
By decreasing the TLRs of line 7 and line 17 by 7.6248 MW
and 2.3289 MW, respectively, the attacker can gain $5804
in RTM, which is almost 25 times of the original profit. In
this case, the LMPs at bus 9 and bus 10 are negative. It
means the attacker pays money for the energy “sold” at bus
10 and collects money for the energy “purchased” at bus 9.
An interesting point is that the attacker is trying to maximize
the total profit although it loses money at bus 10. The profits
remain the same whenS increases from 3 to 7 as shown in
Table III. The attacker’s profit increases monotonically with
its available resources. But after a threshold (i.e.S = 2), the
attacker does not have extra benefits by using more resources.

2) Case 2: In this case, the piecewise linear cost model
is used to approximate generators’ quadratic cost curves.
Accordingly, the incremental cost curves are stepwise. The
single incremental cost model in Case 1 is a special case of the
stepwise incremental cost model whereNw = 1. In Case 2, the
incremental costs are different at various generation levels for
the same unit. As a result, the LMPs vary more in comparison
with the single incremental cost model. Table IV presents the
profits the attacker gain when different stepwise incremental
cost models are used. It shows that the maximum profits are
attained whenS = 2 and line 7 and line 17 are attacked
no matter how many pieces are used to approximate the cost
curves. The largest profit is $5804 whenNw = 1 andS ≥ 2.
The second largest profit $4389 is achieved whenNw = 7 and
S ≥ 2. Hence, it is observed that the profits do not increase
monotonically withNw.

In Case 2, the degeneracy issues are observed and ef-
fectively addressed by adding (40-41) to the model. And a



8

TABLE IV
CASE 2 RESULT FOR14-BUS SYSTEM ($)

S Nw = 1 Nw = 3 Nw = 5 Nw = 7 Nw = 9

0 231.87 224.22 189.53 155.74 159.63
1 2,146.9 779.99 575.13 471.07 480.47
2 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85
3 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85
4 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85
5 5,804.15 2,480.52 3,809.97 4,389.15 3,372.85

TABLE V
CASE 3 RESULT FOR14-BUS SYSTEM ($)

S Nw = 1 Nw = 3 Nw = 5 Nw = 7 Nw = 9

0 231.87 224.22 189.53 155.74 159.63
1 366.09 236.24 252.5 261.18 159.63
2 366.09 243.88 288.18 261.18 269.21
3 366.09 243.88 288.18 265.3 274.96
4 366.09 243.88 288.18 265.3 274.96

good choice ofǫ also helps to avoid the numerical challenge.
It is set to 1 × 10−5 in this paper. Consider the scenario
with Nw = 5 and S = 3. Without constraints (40-41), the
profit calculated is $246,159 whenM = 1 × 105. The profit
increases to $24,543,398 withM = 1 × 107. Obviously,
this is impossible in practice. These profits are obtained with
degenerated solutions, and multiplicity of pricing occurs. In
fact, the profit is unbounded in two directions. It could be any
number from−∞ to ∞. As an attacker, a possible strategy is
to avoid the degeneracy since the profits are unknown and the
abnormal LMP increases the risk of the attack being detected.
The profits listed in Table IV are obtained using the strategy
in section IV. It should be noted that multiple optimal TLRs
to problem (OP) may exist. For example, if the line flow
constraint for l is supposed to be inactive andrl 6= r̂l at
the optimal point, then anyr′l satisfying r̄l ≥ r′l > rl is also
optimal as it doesn’t change LMPs and the optimal value.

3) Case 3: From the results in Case 2, it is observed
that line 7 and line 17 are favorable to the attacker. The
largest profits are obtained by attacking these two lines. Inthis
case, line 7 and line 17 are protected, so the attacker cannot
manipulate their TLRs. Table V shows that the maximum
profit that can be achieved is only $366 whenS = 2 and
Nw = 1. In other situations, the profits are less than $300.
The minimal value of the profit is $243.88, which means the
attacker only gains $20 more by changing the TLRs. Thus,
the system operator can effectively mitigate the impact of the
TLR attack by protecting line 7 and line 17.

4) Acceleration Techniques:Computational burden for the
IEEE 14-Bus system is small, and the corresponding problems
can be solved in 1s. As the improvement is neglectable, the
main purpose of using this system here is to illustrate the
basic idea. Detailed benchmark testing is presented in the
next section. The necessary conditions of optimality related
to generation levels are formulated as

15, 655.5 ≤

5
∑

i=1

cipi ≤ 19, 872.2,

where 19,872.2 is a tighter upper bound thanz(
¯
r) = ∞.

It is obtained by dispatching the most expensive generations
meeting the load demand, which is an upper bound to the
optimal point. The other two necessary optimality conditions
in (32-33) can be obtained as

15, 655.5 +

20
∑

l=1
¯
rl(µ

+

l + µ−

l )

≤ −449.38λ+

20
∑

l=1

τl(−µ+

l + µ−

l ) +

5
∑

i=1
¯
piβ

−

i − p̄iβ
+

i

≤ 19, 872.2 +

20
∑

l=1

r̄l(µ
+

l + µ−

l ),

whereτl = (ΓKdd)l is the lth entry in ΓKdd. The cutting
plane corresponding to (35) is

g+

1 + g+

2 + g+

3 + g+

4 + g+

5 ≤ 3.

According to the data in Table II, we have

q1 = 160, q2 = 110, q3 = 75, q4 = 100, q5 = 90.

Then the following sequence

q3 < q5 < q4 < q2 < q1

is obtained, andk2 = 3. Hence, we can generate a cutting
plane

g−

1 + g−

2 + g−

3 + g−

4 + g−

5 ≤ 2

corresponding to (37). From the two cutting planes generated
above, it can be seen that at most three upper generation
limits can be reached simultaneously, and no more than two
generators will reach their lower generation limits at the same
time.

As discussed in Section III, the line flow binding binary
variables for lines whose flow limit constraints will not be
binding can be eliminated. Based on the inactive condition
shown in (39), we can reduce the number of line flow binding
binary variables from 40 to 14. The remaining ones are
b+1 , b

+

2 , b
+

3 , b
+

4 , b
+

5 , b
+

8 , b
+

10, b
+

13, b
+

15, b
+

17, b
−

6 , b
−

7 , b
−

8 and b−14. The
number of binary combinations decreases to214 from 240 by
eliminating the binary variables that can be fixed at zero.

B. IEEE 118-Bus Testing System

The IEEE 118-Bus testing system consists of 54 gener-
ators, 186 transmission lines, and 91 loads. The detailed
data including generator capacities and cost curves, line
reactances and ratings, and load profiles can be found at
http://motor.ece.iit.edu/Data/.

In this section, we mainly focus on evaluating the computa-
tional performance of the acceleration techniques introduced in
Section III, especially for the scenario-based stochasticmodel
considering load uncertainties. The set of uncertain loadsare
Θ = {1, 5, 7, 10, 12, 13, 15, 16, 50, 60, 80}. The confidence
interval of load is[0.8dn, 1.2dn]. Simulations are performed
with different number of scenarios from 1 to 6 using the
MILP solver GUROBI. The original MILP problem has 2080
constraints and 1272 variables for one scenario. The numbers
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TABLE VI
COMPUTATION BENCHMARK FOR IEEE 118-BUS SYSTEM

# Origi. W/ Eli. W/ Cut. W/ E.&C.

time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%)
1 0.95 4.46 0.33 3.23 0.25 2.34 0.17 0.33
2 8.42 3.91 2.98 1.78 0.83 0.99 0.45 4.61
3 65.03 1.21 27.31 2.41 1.52 3.52 0.63 2.04
4 657.47 4.43 51.48 2.83 16.7 3.69 3.52 1.7
5 4628.63 2.49 836.73 2.04 21.09 1.58 6.89 4.92
6 7200.08 12.36 1931.94 2.18 11.48 4.07 14.39 3.15

of constraints and variables increase to 10615 and 5772
respectively if 6 scenarios are included.

Table VI presents the computation time and solution quality
when different approaches are used. The time limit for the
MILP solver is set to 2 hours, and the gap is set to 5%. The
parameter “NumericFocus” is set to 3 to avoid numerical is-
sues. The first column lists the number of scenarios conisdered.
The second and third columns show the results obtained based
on the original approach without applying any acceleration
techniques. The 4th and 5th columns list the performance of
the approach with binary variables and inactive constraints
elimination. The approach including strong cutting planesare
presented in the 6th and 7th columns. The last two columns
present results for the approach with both binary variables
elimination and cutting planes.

It is observed that the computation time increases extremely
nonlinearly with the number of scenarios. The original ap-
proach is interrupted due to the 2-hour limit, and the relative
gap of the solution obtained is 12.36% with 6 scenarios. It
is observed that the binary variables elimination technique
can effectively reduce the computation time when the number
of scenarios is large. The time is reduced to less than half
when the number of scenarios is 3, and the advantages are
more obvious with larger number of scenarios. Data in the
6th and 7th columns show that cutting planes further reduce
the computation time tremendously. When the number of
scenarios is 5, the approach using cutting planes reduces the
computation time to 21s from 836s and with smaller gap. By
adding cutting planes, the third and fourth approaches have
overwhelming advantages over the original approach and the
binary variables elimination only approach. For example, the
computation time is less than 15 seconds in the case with 6
scenarios, which is only 0.725% that of the second approach.
The advantages are due largely to the cuts (29-30) and (32-
33). These cuts dramatically reduce the computational burden
of the MILP by providing a good search area in advance.

VII. C ONCLUSION

An attacker can gain more profit from virtual transactions in
the two-settlement markets by solving a bi-level optimization
problem, where the LMPs in RTM are manipulated via false
TLR vector injection. Simulation results show that the profit
gain could be very large, so the attacker may have enough
incentives to launch a TLR attack. In order to accelerate the
computation, several techniques are developed. The bench-
mark testing results on the modified IEEE 118-Bus system
validate their effectiveness. A heuristic strategy to address

the multiplicity of pricing is proposed in this paper. We are
working on an exact approach that can resolve the multiplicity
issue. The research on how to protect the transmission network
against TLR attack is also ongoing. The market impact of
transmission line status attack is another interesting topic being
investigated.

APPENDIX A

Letχ(r) denote the feasible set of generation vectorp when
the TLR vector isr in the SCED problem (8-12).χ(

¯
r) ⊆

χ(r) ⊆ χ(r̄) follows as
¯
r ≤ r ≤ r̄ holds for anyr in (11).

The minimal objective value corresponding to a feasible setis
always not greater than that to its subset, so (28) holds.

APPENDIX B

Let η(µ+,µ−,β+,β−) denote

(−µ+ + µ−)⊤ΓKdd +
¯
p⊤β− − p̄⊤β+−λ1Td,

then equation (31) can be rewritten into

z(r̄) ≤ η(µ+,µ−,β+,β−)− (µ+ + µ−)⊤r ≤ z(
¯
r).(56)

Equations (32-33) in Theorem 2 can also be rewritten as
{

z(r̄) ≤ η(µ+,µ−,β+,β−)− (µ+ + µ−)⊤
¯
r (57)

z(
¯
r) ≥ η(µ+,µ−,β+,β−)− (µ+ + µ−)⊤r̄ (58)

Comparing equations (56-58), Theorem 2 is proved as long as

(µ+ + µ−)⊤
¯
r ≤ (µ+ + µ−)⊤r ≤ (µ+ + µ−)⊤r̄.(59)

holds. We have

µ+

l + µ−

l ≥ 0, r̄l − rl ≥ 0, ∀l (60)

so the product of two left hand sides in (60) is still non-
negative

(µ+

l + µ−

l )(r̄l − rl) ≥ 0, ∀l. (61)

Hence
(µ+

l + µ−

l )r̄l ≥ (µ+

l + µ−

l )rl, ∀l. (62)

Therefore, the second inequality in (59)

(µ+ + µ−)⊤r̄ =
∑

l

(µ+

l + µ−

l )r̄l

≥
∑

l

(µ+

l + µ−

l )rl = (µ+ + µ−)⊤r

is valid. The first inequality in (59) can also be proved
similarly. Hence, Theorem 2 is proved.
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